BIOPAC® Systems, Inc. Logo

Maximal Oxygen Consumption (VO2 max)

Maximal oxygen consumption measurements nominally incorporate the use of a mixing chamber (AFT15A/B), facemask with non-rebreathing T valve (AFT25) and an air flow transducer (TSD107B). Typically, air flow measurements are performed on the inspiration side of the AFT25. The expiration side is directed to the AFT15, where O2 and CO2 concentrations are monitored using the O2100C and CO2100C, respectively. Use the Expression Transformation in AcqKnowledge® to perform the Haldane transformation and STP corrections. The final result provides real-time oxygen consumption measurements, permitting precise determination of VO2 maximum, deficit, and post-exercise consumption.

Details

This is one of many ADVANCED FEATURES for the selected Application. Scroll down for hardware options.

Support

Application Notes

Knowledge Base

Spotlight On
BIOPAC ECG

ECG Smart Amplifier

Easily record great ECG data and derived signals for heart rate, RR interval, and R-wave amplitude. BIOPAC’s new Smart Amplifiers are designed for great data. Smart Amplifiers improve performance by amplifying the physiological signal close to the subject, which allows a high-level voltage connection to the data acquisition system and reduces noise artifact. AcqKnowledge Smart […]

View All
Latest News

Neuromarketing Interview | How VR Can Improve Marketing Research

Alex Dimov, BIOPAC Sales Executive, was interviewed at the Neuromarketing World Forum by Inside Marketing to discuss how virtual reality can improve marketing research. Alex explains how VR can be used to present virtual iterations of a product to save time and money, and notes that measuring physiological responses adds lots of information for product and messaging […]

BIOPAC Launches New “Smart Amplifiers”

February 14, 2019 BIOPAC Systems, Inc. Goleta, CA USA New “Smart Amplifiers” make it easier than ever for life science researchers to get great data Fast Setup & High Performance Smart Amplifiers improve performance by amplifying the physiological signal close to the subject, which allows a high-level voltage connection to the data acquisition system and reduces noise artifact. […]

Read All
Request a Demonstration
Request a Demonstration