BIOPAC® Systems, Inc. Logo

130 – Blood Pressure Measurement for the BSL PRO

The most common form of indirect blood pressure measurement employs a pressure cuff, pump and pressure transducer. This complete assembly is commonly referred to as a Sphygmomanometer.

Typically, the cuff is wrapped around the upper arm and is inflated to a pressure exceeding that of the brachial artery. This amount of pressure collapses the artery and stops the flow of blood to the arm. The pressure of the cuff is slowly reduced as the pressure in the cuff is monitored by the pressure transducer. As the pressure drops, it will eventually match the systolic (peak) arterial pressure. At this point, the blood is able to “squirt” through the brachial artery. This squirting results in turbulence which creates the Korotkoff sounds. The Korotkoff sounds are detected using an SS17L physiological sounds transducer. As the cuff pressure continues to drop, the pressure will eventually match the diastolic pressure of the artery. At this point the Korotkoff sounds stop completely, because the blood is now flowing unrestricted through the artery.

Associated Applications

Spotlight On
BIOPAC training

T4 Human Physiology Conference

Register Today! T4: Tools, Trends, Techniques, and Technology Monday, July 24, 2017 – Wednesday, July 26, 2017 Join BIOPAC for three days of hands-on, small-group human physiology workshops, presented by renowned experts, on the beautiful University of California at Santa Barbara campus in Santa Barbara, California, USA. Who should attend Anyone who records and analyzes […]

View All
Latest News

Mobita Advances Prestimulus EEG Research

The Mobita 32-Channel EEG recording system was used in research examining if physiological data can be used to predict truly random events that correspond to perceptual stimuli. Baumgart, et al. from the University of California Santa Barbara utilized a quantum random number generator (qRNG) to choose from three randomized conditions: light, sound, and no stimulus. […]

News Citations—Respiration and Cardiovascular Activity

BIOPAC provides software and hardware that allow for research teams to record and analyze respiration activity in physiological experimentation. Here are a few notable studies in monitoring respiration and cardiovascular activity. The coupling between peripheral microcirculation and slow breathing: The purpose of this study was to investigate the coupling of breathing movements and microcirculatory blood […]

Read All
Request a Demonstration
Request a Demonstration