BIOPAC® Systems, Inc. Logo

Phasic EDA: Methods for computing phasic skin conductance from tonic

AcqKnowledge offers two methods for computing phasic skin conductance from tonic. Both methods are designed to isolate relatively quick changes in the signal. In one method, the raw skin conductance data are passed through a high pass filter with a cutoff frequency of 0.05 Hz. In the other method, the data are passed through a median value smoothing filter, and then that filtered waveform is subtracted from the original. Since median value smoothing discards areas of rapid change, subtracting this smoothed waveform leaves behind only those sections where the data are changing rapidly.

The median value smoothing filter is computationally intensive. Processing time required by this filter depends on the smoothing factor. Lower values of this factor entail more computations and thus take longer to complete. When the value is too small, the software may seem to hang indefinitely. Therefore, from a computational standpoint, it is better to use a relatively large smoothing factor if this method is to be used for deriving phasic skin conductance.   In some older versions of AcqKnowledge, the default smoothing factor was 0.25 seconds. A factor of four seconds or eight seconds is probably more appropriate and will produce results much more quickly.

The alternative method, high pass filtering the data, is generally much faster than median value smoothing. In versions of AcqKnowledge earlier than 4.2, however, this method introduced an artifact that makes the first 30 seconds or so of the data unusable. To apply the same filter without the artifact in AcqKnowledge 4.0 or 4.1, the phasic skin conductance can be derived this way:

  1. Using the I-beam tool or the selection palette, move the cursor to the first data point.
  2. Set a measurement box to “Value” for the raw skin conductance data.
  3. Choose Transform > Waveform Math… and set
    • Source 1 as the raw skin conducance data
    • Operand as “-“
    • Source 2 as “K” (constant), and then in the edit box for K, enter the number obtained from the Value measurement of step 2 above
    • Destination as “New”  
    • Transform entire wave (check the box to enable) 
  4. Click OK.
  5. Select the new waveform created by step 4.
  6. Choose Transform > Digital Filters > IIR > High Pass… and set
    • Frequency cutoff to “Fixed at” “0.05” Hz
    • Q “0.707” (the default value)
    • Filter entire waveform (check the box to enable) 
  7. Click OK.
  8. Edit the channel label on the left to indicate that the channel contains “Phasic EDA.”

In AcqKnowledge version 4.2 and above, these steps are built into the “Derive Phasic EDA from Tonic” analysis routine when the high pass filter option is selected. Hence in these versions, the 0.05 Hz filter does not introduce an artifact.

Options for deriving phasic skin conductance—which of the two methods to use, and what smoothing factor (Baseline estimation window) to use in the case that “Smoothing Baseline Removal” is chosen—are accessible via “Analysis > Electrodermal Activity > Preferences…”

Last Modified 24Mar2015

Associated Applications

Associated Application Notes

Spotlight On
Ventilator Validation Kit

Ventilator Validation and Test Equipment

The Ventilator Validation Kit supports new prototype development, existing design validation for production testing, mobile field testing and verification, and other uses where accurate pressure and flow measurements are critical. The Ventilator Validation Kit provides ventilator manufacturers and prototype developers with a complete solution for validating new medical/hospital-grade ventilator products intended for human use. The VVK100-SYS includes […]

View All
Latest News

New Citations | Respiration Analysis and More

Comparing Diaphragm Tissue Between Healthy and Ill Patients The human diaphragm is one of the primary muscles used in respiration, contracting and expanding to control breathing. To measure how much diaphragms move for critically ill patients (in an Intensive Care Unit) compared to diaphragms in a healthy subject, patients at “Papageorgiou” General Hospital in Thessaloniki, […]

BIOPAC Systems Helps STARK Industries Launch VITAL Ventilator for NASA JPL

BIOPAC’s ventilator testing equipment and expertise supports STARK Industries’ effort to manufacture, validate, and test NASA JPL’s VITAL Ventilators Goleta, California – June 16, 2020 BIOPAC Systems, Inc. announced a partnership with STARK Industries, LLC to provide ventilator validation and testing equipment for the mass production of ventilators. STARK Industries was awarded a global license […]

Read All
Request a Demonstration
Request a Demonstration