BIOPAC® Systems, Inc. Logo

160 – Gas Analysis Module Response Time

A major factor affecting breath-by-breath respiratory gas measurements is the response time of the O2100C and CO2100C modules. Although the CO2100C module has somewhat faster response times than the O2100C module, both can seemingly create obstacles when performing relatively high-speed breath-by-breath ventilation measurements.
 
Typically, the O2100C and CO2100C modules are used in conjunction with a mixing chamber and non-rebreathing “T” valve to measure varying gas concentration levels as a function of time. The mixing chamber and “T” valve effectively construct a smoothing filter for expired gases. Because the gas concentrations can change only gradually in this configuration, it is simple to monitor the changing oxygen and carbon dioxide levels present in the mixing chamber.

An alternate, and more difficult, measurement scenario is where oxygen or carbon dioxide concentrations need to be measured exactly, at particular points during a single respiration. In this case, it is very important that the module be able to keep up with the expected rate of change of gas concentration.

This application note will concentrate on methods to improve the response time of the O2100C module. When necessary, the same principles will apply to enhance the speed of the CO2100C module.

Associated Applications

Spotlight On
BIOPAC training

T4 Human Physiology Conference

Register Today! T4: Tools, Trends, Techniques, and Technology Monday, July 24, 2017 – Wednesday, July 26, 2017 Join BIOPAC for three days of hands-on, small-group human physiology workshops, presented by renowned experts, on the beautiful University of California at Santa Barbara campus in Santa Barbara, California, USA. Who should attend Anyone who records and analyzes […]

View All
Latest News

Mobita Advances Prestimulus EEG Research

The Mobita 32-Channel EEG recording system was used in research examining if physiological data can be used to predict truly random events that correspond to perceptual stimuli. Baumgart, et al. from the University of California Santa Barbara utilized a quantum random number generator (qRNG) to choose from three randomized conditions: light, sound, and no stimulus. […]

News Citations—Respiration and Cardiovascular Activity

BIOPAC provides software and hardware that allow for research teams to record and analyze respiration activity in physiological experimentation. Here are a few notable studies in monitoring respiration and cardiovascular activity. The coupling between peripheral microcirculation and slow breathing: The purpose of this study was to investigate the coupling of breathing movements and microcirculatory blood […]

Read All
Request a Demonstration
Request a Demonstration