BIOPAC® Systems, Inc. Logo

160 – Gas Analysis Module Response Time

A major factor affecting breath-by-breath respiratory gas measurements is the response time of the O2100C and CO2100C modules. Although the CO2100C module has somewhat faster response times than the O2100C module, both can seemingly create obstacles when performing relatively high-speed breath-by-breath ventilation measurements.
 
Typically, the O2100C and CO2100C modules are used in conjunction with a mixing chamber and non-rebreathing “T” valve to measure varying gas concentration levels as a function of time. The mixing chamber and “T” valve effectively construct a smoothing filter for expired gases. Because the gas concentrations can change only gradually in this configuration, it is simple to monitor the changing oxygen and carbon dioxide levels present in the mixing chamber.

An alternate, and more difficult, measurement scenario is where oxygen or carbon dioxide concentrations need to be measured exactly, at particular points during a single respiration. In this case, it is very important that the module be able to keep up with the expected rate of change of gas concentration.

This application note will concentrate on methods to improve the response time of the O2100C module. When necessary, the same principles will apply to enhance the speed of the CO2100C module.

Associated Applications

Spotlight On
Small Animal SpO2 in MRI

Small Animal SpO2 in MRI

Complete system for small animal SpO2 measurements in an MRI Small Animal Noninvasive Vital Signs Monitor Works on conscious or anesthetized subjects Patented sensor supports heart rates in the range of 90-900 BPM Works with neonatal mice up to 500 gram rats MRI sensor works in small, large and closed bore MRI environments up to 19T […]

View All
Latest News

News Citations—Respiration and Cardiovascular Activity

BIOPAC provides software and hardware that allow for research teams to record and analyze respiration activity in physiological experimentation. Here are a few notable studies in monitoring respiration and cardiovascular activity. The coupling between peripheral microcirculation and slow breathing: The purpose of this study was to investigate the coupling of breathing movements and microcirculatory blood […]

BIOPAC on 60 Minutes | Brain Hacking with Anderson Cooper

CBS News | 60 Minutes | Brain Hacking APRIL 9, 2017| Why can’t we stop looking at our smartphones? And are the designers of the apps and content on them using brain science to keep us hooked? Anderson Cooper reports.   BIOPAC users Larry D. Rosen, Ph.D. and Nancy A. Cheever, Ph.D. from California State […]

Read All
Request a Demonstration
Request a Demonstration