BIOPAC® Systems, Inc. Logo

117 – Pulse Transit Time and Velocity Calculation

Pulse Transit Time (PTT) is the time it takes the pulse pressure waveform to propagate through a length of the arterial tree. The pulse pressure waveform results from the ejection of blood from the left ventricle and moves with a velocity much greater than the forward movement of the blood itself.

With increased vessel wall stiffness (decreased compliance), DELTA V decreases and pulse wave velocity increases. With increased blood pressure, the arterial walls are more strongly stretched and pulse wave velocity increases. Accordingly, for a fixed vessel distance, as the pulse transit time increases the blood pressure decreases.

In this application note, pulse transit time will be measured between the R-wave and the peak of the pressure wave at the finger, as measured by the pulse plethysmograph.

Associated Applications

Spotlight On
AcqKnowledge Workflow Action examples

Workflow Automation Licenses

Workflow—A Great Tool for Every Researcher! Automate AcqKnowledge with New Workflow Tool New automation tool significantly saves time and improves consistency with standardized procedures Workflow’s drag-and-drop interface allows you to automate and repeat the signal-conditioning and processing steps your protocol requires in an easy-to-use process without programming or scripting knowledge. Batch process multiple files with confidence […]

View All
Latest News

New Citations | BIOPAC in Ergonomics

Whether using specialized equipment, performing repetitive tasks, or simply going about our daily work routine, the effects of design in our environment as well as the tools we use and the way we use them can impact our health, work performance, and quality of life. Here are a few studies that have recorded and analyzed […]

EDA Guide Available

BIOPAC’s comprehensive EDA Guide provides an introduction to Electrodermal Activity (EDA or GSR) and details topics including: EDA Complex: SCL, SCR, tonic, phasic, specific SCR, non-specific SCR Participant Prep & Electrode Placement Data Recording tips Automated EDA Analysis Routines Digital input to Stim Events Stim-Response Analysis Derive Phasic EDA from Tonic Event-related EDA Analysis Locate […]

Read All
Request a Demonstration
Request a Demonstration