BIOPAC® Systems, Inc. Logo

117 – Pulse Transit Time and Velocity Calculation

Pulse Transit Time (PTT) is the time it takes the pulse pressure waveform to propagate through a length of the arterial tree. The pulse pressure waveform results from the ejection of blood from the left ventricle and moves with a velocity much greater than the forward movement of the blood itself.

With increased vessel wall stiffness (decreased compliance), DELTA V decreases and pulse wave velocity increases. With increased blood pressure, the arterial walls are more strongly stretched and pulse wave velocity increases. Accordingly, for a fixed vessel distance, as the pulse transit time increases the blood pressure decreases.

In this application note, pulse transit time will be measured between the R-wave and the peak of the pressure wave at the finger, as measured by the pulse plethysmograph.

Associated Applications

Spotlight On
Programmable Stimulation System for E-Prime

Programmable Stimulation System for E-Prime

The STMEPM Programmable Stimulation System for E-Prime allows a user to interface the STMISOLA Stimulator with E-Prime to control the stimulus frequency and stimulus intensity for real-time stimulus delivery changes based on a subject’s responses. It is also possible to hardcode the stimulus intensity levels in the presentation so that predefined stimulus levels are delivered […]

View All
Latest News

MEAP and BIOPAC used to quantify rapid changes in cardiovascular state

The new issue of Psychophysiology has a study “Quantifying rapid changes in cardiovascular state with a moving ensemble average” using MEAP for preprocessing/analysis and BIOPAC hardware and software for data collection, display, and storage. The proof of concept study demonstrates a viable method for the adoption of ICG measures across the field of psychophysiology. MEAP (moving ensemble […]

News Citations—fMRI & Temperature, Postpartum Depression, and Fibromyalgia

BIOPAC provides software and hardware that allow for research teams to record and analyze respiration activity in physiological experimentation. Here are a few notable studies covering MRI, ECG, and Laser Doppler Flow measurement. fMRI & Thermal Perception: The neural mechanisms underlying thermal perception (how hot or cold we perceive the temperature to be) have not been fully […]

Read All
Request a Demonstration
Request a Demonstration