BIOPAC® Systems, Inc. Logo

PPG setup and calibration

To record a pulse waveform using the PPG100C, follow these setup and calibration details:

Connections

Plug the transducer into the amplifier but do not connect it to the subject yet.

red lead into VSUP+ port
black lead into GND port
blue lead into INPUT port

PPG100C swithc settings to record puilseSwitch Settings

Hint: Using the 3.0 Hz LP setting and the 0.5 Hz HP setting in conjunction will make it easier to find the rate of the pulse waveform (these filters can be applied in software as well).

Gain: 10 (lowest Gain option) = top position
LP: 3.0 Hz = top position
HP (first bank) : 0.5 Hz HP = top position
HP (second bank): 0.05 Hz HP = top position

Set Up Acquisition

Recommended acquisition sample rate: 100 Hz.

Recording

  1. Start recording in AcqKnowledge.
    • No calibration is necessary—simply make sure the correct channel is enabled and no other amplifiers are set to the same channel.
  2. Perform Amplifier baseline offset adjustment.
  3. After the amplifier baseline offset adjustment is complete, place the transducer on the finger (e.g., index finger tip) and tighten the Velcro strap (or attach to the ear with adhesive collars).
    • Note: To minimize motion artifact, place the sensor on a hand that will remain mostly immobile.
  4. Check the tension level.
    • If the strap is too tight, blood flow may be constricted, resulting in an almost straight line signal.
    • If the strap is too loose, ambient light could enter the sensor, resulting in no recognizable waveform.
  5. Once you are able to obtain a good recording, it is recommended to increase the gain as much as possible as long as the pulse waveform never goes beyond ±10 Volts.
    • The 0.5 Hz HP filter setting will force the signal to return to baseline faster than with the 0.05 Hz filter.
    • The 10 Hz LP filter will reveal more detail from the waveform than the 3 Hz LP filter.
    • Observe the effect of different filter settings (note that any additional filtering can also be performed in the software, either online or offline).

Sample Results

The following graphs show results of motion artifact and varying tension levels:

Well-placed sensor:

Example of motion artifact (finger):

Example of movement artifact (hand):
Loose sensor:
Tight Sensor:

Associated Applications

Associated Application Notes

Spotlight On
Noninvasive BP Amp with Hemodynamics

Noninvasive Blood Pressure Amp with Hemodynamics

Simple and noninvasive—finger sensor provides accurate & immediate feedback: arterial BP, cardiac output, fluid and hemodynamic status The NIBP100D-HD noninvasive blood pressure system provides a continuous, beat-to-beat, blood pressure signal recorded from the fingers of a subject. Measure noninvasive BP parameters (BP, sBP, dBP, mBP, and PR) plus hemodynamic parameters (PPV, SVV, CO, CI, SV,SI, SVR, […]

View All
Latest News

Integrating Eye Tracking Data with Neuromarketing Parameters

Hardware and software packages from BIOPAC allow commercial consumer marketing teams to easily combine precise eye tracking data with physiological data recording. Here are a few notable studies recording physiology with eye tracking data: Predicting Advertising Success: While neurophysiological methods have become increasingly popular to better understand marketing phenomena among academics and practitioners, the success of […]

ECG Recording and Neuromarketing

BIOPAC ECG solutions have been used in several research studies, including many that pertain to consumer behavior or neuromarketing. We have collected a few notable articles recording ECG in consumer research: Impact of Malevolent Business Practices: With information on potentially suspect business practices more widely available than ever, it is important to understand what this […]

Read All
Request a Demonstration
Request a Demonstration