BIOPAC® Systems, Inc. Logo

PPG setup and calibration

To record a pulse waveform using the PPG100C, follow these setup and calibration details:

Connections

Plug the transducer into the amplifier but do not connect it to the subject yet.

red lead into VSUP+ port
black lead into GND port
blue lead into INPUT port

PPG100C swithc settings to record puilseSwitch Settings

Hint: Using the 3.0 Hz LP setting and the 0.5 Hz HP setting in conjunction will make it easier to find the rate of the pulse waveform (these filters can be applied in software as well).

Gain: 10 (lowest Gain option) = top position
LP: 3.0 Hz = top position
HP (first bank) : 0.5 Hz HP = top position
HP (second bank): 0.05 Hz HP = top position

Set Up Acquisition

Recommended acquisition sample rate: 100 Hz.

Recording

  1. Start recording in AcqKnowledge.
    • No calibration is necessary—simply make sure the correct channel is enabled and no other amplifiers are set to the same channel.
  2. Perform Amplifier baseline offset adjustment.
  3. After the amplifier baseline offset adjustment is complete, place the transducer on the finger (e.g., index finger tip) and tighten the Velcro strap (or attach to the ear with adhesive collars).
    • Note: To minimize motion artifact, place the sensor on a hand that will remain mostly immobile.
  4. Check the tension level.
    • If the strap is too tight, blood flow may be constricted, resulting in an almost straight line signal.
    • If the strap is too loose, ambient light could enter the sensor, resulting in no recognizable waveform.
  5. Once you are able to obtain a good recording, it is recommended to increase the gain as much as possible as long as the pulse waveform never goes beyond ±10 Volts.
    • The 0.5 Hz HP filter setting will force the signal to return to baseline faster than with the 0.05 Hz filter.
    • The 10 Hz LP filter will reveal more detail from the waveform than the 3 Hz LP filter.
    • Observe the effect of different filter settings (note that any additional filtering can also be performed in the software, either online or offline).

Sample Results

The following graphs show results of motion artifact and varying tension levels:

Well-placed sensor:

Example of motion artifact (finger):

Example of movement artifact (hand):
Loose sensor:
Tight Sensor:

Associated Applications

Associated Application Notes

Spotlight On
Unity for BIOPAC

Unity Inferface for AcqKnowledge

Unity® Interface for AcqKnowledge® allows you to easily to connect your Unity3D projects with BIOPAC acquisition hardware and analysis software. Create your virtual environment using industry-standard Unity Connect and configure your project with AcqKnowledge in real time Control Acquisition from Unity to Custom Markers, Digital, and Analog I/O Deploy to your devices. Immerse your users and […]

View All
Latest News

New Citations | Computer-Human Interaction

Technology is more interactive in a multitude of contexts, from completing tasks at work, looking for help online, to leisurely activities like news and video streaming. Understanding how to improve interaction between humans and computers can hold benefits in multiple situations. The following are recent human-computer interaction (HCI) studies. The Eyes Have It Nasser et al. […]

New Citations | Breath of Life

With new developments happening daily, it’s easy to forget to slow down and take a breath. Breathing can be as forgettable as it is crucial; the often forgettable automatic function inspires rituals in religions around the world. Studies have shown the importance of breathing not just in a spiritual sense but also in physiological health benefits. Lung functionality […]

Read All
Request a Demonstration
Request a Demonstration