BIOPAC® Systems, Inc. Logo

PPG setup and calibration

To record a pulse waveform using the PPG100C, follow these setup and calibration details:

Connections

Plug the transducer into the amplifier but do not connect it to the subject yet.

red lead into VSUP+ port
black lead into GND port
blue lead into INPUT port

PPG100C swithc settings to record puilseSwitch Settings

Hint: Using the 3.0 Hz LP setting and the 0.5 Hz HP setting in conjunction will make it easier to find the rate of the pulse waveform (these filters can be applied in software as well).

Gain: 10 (lowest Gain option) = top position
LP: 3.0 Hz = top position
HP (first bank) : 0.5 Hz HP = top position
HP (second bank): 0.05 Hz HP = top position

Set Up Acquisition

Recommended acquisition sample rate: 100 Hz.

Recording

  1. Start recording in AcqKnowledge.
    • No calibration is necessary—simply make sure the correct channel is enabled and no other amplifiers are set to the same channel.
  2. Perform Amplifier baseline offset adjustment.
  3. After the amplifier baseline offset adjustment is complete, place the transducer on the finger (e.g., index finger tip) and tighten the Velcro strap (or attach to the ear with adhesive collars).
    • Note: To minimize motion artifact, place the sensor on a hand that will remain mostly immobile.
  4. Check the tension level.
    • If the strap is too tight, blood flow may be constricted, resulting in an almost straight line signal.
    • If the strap is too loose, ambient light could enter the sensor, resulting in no recognizable waveform.
  5. Once you are able to obtain a good recording, it is recommended to increase the gain as much as possible as long as the pulse waveform never goes beyond ±10 Volts.
    • The 0.5 Hz HP filter setting will force the signal to return to baseline faster than with the 0.05 Hz filter.
    • The 10 Hz LP filter will reveal more detail from the waveform than the 3 Hz LP filter.
    • Observe the effect of different filter settings (note that any additional filtering can also be performed in the software, either online or offline).

Sample Results

The following graphs show results of motion artifact and varying tension levels:

Well-placed sensor:

Example of motion artifact (finger):

Example of movement artifact (hand):
Loose sensor:
Tight Sensor:

Associated Applications

Associated Application Notes

Spotlight On
Ventilator Validation Kit

Ventilator Validation and Test Equipment

The Ventilator Validation Kit supports new prototype development, existing design validation for production testing, mobile field testing and verification, and other uses where accurate pressure and flow measurements are critical. The Ventilator Validation Kit provides ventilator manufacturers and prototype developers with a complete solution for validating new medical/hospital-grade ventilator products intended for human use. The VVK100-SYS includes […]

View All
Latest News

Researchers Respond | iSAVE: Rapidly deployable system to expand ventilator capacity

MIT and Harvard researchers developed a new technique to expand ventilator capacity Individualized System for Augmenting Ventilator Efficacy (iSAVE): A Rapidly deployable system to expand ventilator capacity “The iSAVE is a rapidly deployable solution in response to the urgent shortage of mechanical ventilators for respiratory support during the COVID-19 pandemic. In contrast to previously described […]

New Ventilator Validation Kit for Rapid Development & Field Testing

New Ventilator Validation System Allows Device Manufacturers to Test Ventilator Pressure and Volume System supports rapid development and testing of hardware for COVID-19 treatment Goleta, California – March 24, 2020 BIOPAC Systems, Inc. announced a new Ventilator Validation System for engineering and device manufacturers to use when designing and testing new and existing ventilators for […]

Read All
Request a Demonstration
Request a Demonstration