BIOPAC® Systems, Inc. Logo

PPG setup and calibration

To record a pulse waveform using the PPG100C, follow these setup and calibration details:

Connections

Plug the transducer into the amplifier but do not connect it to the subject yet.

red lead into VSUP+ port
black lead into GND port
blue lead into INPUT port

PPG100C swithc settings to record puilseSwitch Settings

Hint: Using the 3.0 Hz LP setting and the 0.5 Hz HP setting in conjunction will make it easier to find the rate of the pulse waveform (these filters can be applied in software as well).

Gain: 10 (lowest Gain option) = top position
LP: 3.0 Hz = top position
HP (first bank) : 0.5 Hz HP = top position
HP (second bank): 0.05 Hz HP = top position

Set Up Acquisition

Recommended acquisition sample rate: 100 Hz.

Recording

  1. Start recording in AcqKnowledge.
    • No calibration is necessary—simply make sure the correct channel is enabled and no other amplifiers are set to the same channel.
  2. Perform Amplifier baseline offset adjustment.
  3. After the amplifier baseline offset adjustment is complete, place the transducer on the finger (e.g., index finger tip) and tighten the Velcro strap (or attach to the ear with adhesive collars).
    • Note: To minimize motion artifact, place the sensor on a hand that will remain mostly immobile.
  4. Check the tension level.
    • If the strap is too tight, blood flow may be constricted, resulting in an almost straight line signal.
    • If the strap is too loose, ambient light could enter the sensor, resulting in no recognizable waveform.
  5. Once you are able to obtain a good recording, it is recommended to increase the gain as much as possible as long as the pulse waveform never goes beyond ±10 Volts.
    • The 0.5 Hz HP filter setting will force the signal to return to baseline faster than with the 0.05 Hz filter.
    • The 10 Hz LP filter will reveal more detail from the waveform than the 3 Hz LP filter.
    • Observe the effect of different filter settings (note that any additional filtering can also be performed in the software, either online or offline).

Sample Results

The following graphs show results of motion artifact and varying tension levels:

Well-placed sensor:

Example of motion artifact (finger):

Example of movement artifact (hand):
Loose sensor:
Tight Sensor:

Associated Applications

Associated Application Notes

Spotlight On
Small Animal SpO2 in MRI

Small Animal SpO2 in MRI

Complete system for small animal SpO2 measurements in an MRI Small Animal Noninvasive Vital Signs Monitor Works on conscious or anesthetized subjects Patented sensor supports heart rates in the range of 90-900 BPM Works with neonatal mice up to 500 gram rats MRI sensor works in small, large and closed bore MRI environments up to 19T […]

View All
Latest News

News Citations—Respiration and Cardiovascular Activity

BIOPAC provides software and hardware that allow for research teams to record and analyze respiration activity in physiological experimentation. Here are a few notable studies in monitoring respiration and cardiovascular activity. The coupling between peripheral microcirculation and slow breathing: The purpose of this study was to investigate the coupling of breathing movements and microcirculatory blood […]

BIOPAC on 60 Minutes | Brain Hacking with Anderson Cooper

CBS News | 60 Minutes | Brain Hacking APRIL 9, 2017| Why can’t we stop looking at our smartphones? And are the designers of the apps and content on them using brain science to keep us hooked? Anderson Cooper reports.   BIOPAC users Larry D. Rosen, Ph.D. and Nancy A. Cheever, Ph.D. from California State […]

Read All
Request a Demonstration
Request a Demonstration