BIOPAC® Systems, Inc. Logo

117 – Pulse Transit Time and Velocity Calculation

Pulse Transit Time (PTT) is the time it takes the pulse pressure waveform to propagate through a length of the arterial tree. The pulse pressure waveform results from the ejection of blood from the left ventricle and moves with a velocity much greater than the forward movement of the blood itself.

With increased vessel wall stiffness (decreased compliance), DELTA V decreases and pulse wave velocity increases. With increased blood pressure, the arterial walls are more strongly stretched and pulse wave velocity increases. Accordingly, for a fixed vessel distance, as the pulse transit time increases the blood pressure decreases.

In this application note, pulse transit time will be measured between the R-wave and the peak of the pressure wave at the finger, as measured by the pulse plethysmograph.

Associated Applications

Spotlight On
Smart Center controller, 2-3 wireless transmitters & AcqKnowledge plus case

Smart Center | Stand-alone BioNomadix Wireless Systems

Smart Center Stand-alone, Portable Wireless Physiology Systems Smart Center Essentials entry-level system includes a Smart Center Device (BN-SMART with USB power cable), 2 or 3 Transmitters (BN-xxx-T with chargers); AcqKnowledge for Smart Center, and a case. Smart Center Enhanced adds a Logger (BN-LOGGER) and Basic Scripting License (ACK100W-BAS) to the Smart Center Device (BN-SMART with powercable), 3 […]

View All
Latest News

New Citations | BIOPAC in Stimulus Presentation Studies

BIOPAC provides software and hardware that allows research teams to study stimulus presentation data. Here are a few notable studies using BIOPAC equipment for research on stimuli’s effects using ECG and SCL data. Your Face Scares Me This study addressed the impact of individual differences in social anxiety by examining the effects of perceptual load and stimulus valence when […]

Electrocardiography Guide Now Available

BIOPAC’s comprehensive Introductory ECG Guide addresses fundamental to advanced concerns to optimize electrocardiography data recording and analysis. Topics include: ECG Complex; Electrical and Mechanical Sequence of a Heartbeat; Systole and Diastole; Configurations for Lead I, Lead II, Lead III, 6-lead ECG, 12-lead ECG, precordial leads; Ventricular Late Potentials (VLPs); ECG Measurement Tools; Automated Analysis Routines for extracting, […]

Read All
Request a Demonstration
Request a Demonstration