BIOPAC® Systems, Inc. Logo

Stimulator Module

Pulse and waveform stimulus outputs

Easy-to-modify single-, double- or multiple-pulse sequence outputs of any polarity

Request More Info
Stimulator Module
Part #: STM100C

The STM100C module provides pulse and waveform stimulus outputs for nerve conduction, evoked response (e.g. ABR studies audio stimulus-response (e.g. startle response) and somatosensory response studies. The Stimulator setup in AcqKnowledge provides easy-to-modify single-, double- or multiple-pulse sequence outputs of any polarity. The Stimulator setup screen also provides standard sine, triangular and square wave outputs for other kinds of physiological tests. Create an arbitrary waveform by modifying an existing wave or reading in a sequence of user-specified numbers (text file).

See More...

Programmable Stimulator Module
View Spec PDF

Are You Looking for These?

Part #: STM100C
Categories: Stimulation - Research
Subcategories: Stimulators - Research

Alternatives
For the same Platform

Details

Compatibility


Stimulus duration, repetition, onset and amplitude are completely programmable. For interactive changes during recording, stimulus amplitude levels can also be controlled manually. Overload and pulse stimulus indicators are positioned on the module’s front panel for easy viewing. The 50 Ohm output port can simultaneously output a trigger or analog signal to piezo transducers, recorders, oscilloscopes, meters, etc. The External Stimulus output port on the STM100C can be used to drive headphones or tubephones directly.

In addition to providing computer control of stimulus waveforms, the STM100C can also buffer signals from any Biopotential or Transducer module, which has its output directed to the STM100C input during recording.

  • With the OUT100 headphones, the STM100C module can provide tone or click output (e.g. startle response)
  • With the OUT101 ear tubephone, the STM100C can output a series of clicks or tone pips for auditory brainstem response (ABR) testing.
  • With the OUT102 piezo transducer, the STM100C can provide an audible indicator, or alarm, when signal levels cross pre-defined thresholds.
  • With the TSD190 haptic (tactile) stimulator, mechanically stimulate a 1.5 mm diameter area of skin surface; both plunger force and travel can be infinitely adjusted between zero and a specified maximum value. Use to perform somatosensory and other types of tactile sensory tests; the TSD190 can be employed in an averaging-type sensory nerve test to determine the activation threshold and speed of propagation of somatosensory nerves.
  • With the STMISO series stimulus isolation adapters, the STM100C can provide high voltage or constant current stimulus output for nerve conduction (see NERVE1 nerve chamber), somatosensory and other types of stimulus response studies.
  • With the CBL105 and CBL202, the STM100C is capable of driving a low voltage (10 V) nerve conduction chamber directly (without a STMISO).
  • To listen to signals from other module outputs during acquisition (e.g., EMG or heart sounds signals), use the OUT100 headphones.

The Current Feedback Monitor Cable (CBLCFMA) is recommended for use with any voltage stimulator; to isolate CBLCFMA output, use INISO and HLT100C. Always make sure to place the electrodes on the participant at least 10 minutes before starting any electrical stimulation. Use a CBLCFMA to monitor and record the actual current delivered to the participant at ALL times. A large enough change in current delivered to the participant will alter the subjective perception of the stimulation. Thus, an unpleasant shock may become painful if more current starts being delivered or become ineffectual if less current is being delivered than during threshold identification. Changes in the levels of delivered current are due to changes in impedance. Changes in impedance could be due to a number of factors: gel saturating the skin over time; gel drying up – over longer period of times; hydration level of participant; sweating; decoupling of electrodes and skin due to motion artifacts; etc.

Related Publications

Superficial moist heat’s lack of influence on soleus function. J Sport Rehabil. 2009 Aug;18(3):438-47. Long BC, Hopkins JT. Dept of Health and Human Performance, Oklahoma State University, Stillwater, OK 74078, USA.

Support

Application Notes

Applications

Downloads/Resources

Knowledge Base

Recommended Items

Spotlight On
Smart Center controller, 2-3 wireless transmitters & AcqKnowledge plus case

Smart Center | Stand-alone BioNomadix Wireless Systems

Smart Center Stand-alone, Portable Wireless Physiology Systems Smart Center Essentials entry-level system includes a Smart Center Device (BN-SMART with USB power cable), 2 or 3 Transmitters (BN-xxx-T with chargers); AcqKnowledge for Smart Center, and a case. Smart Center Enhanced adds a Logger (BN-LOGGER) and Basic Scripting License (ACK100W-BAS) to the Smart Center Device (BN-SMART with powercable), 3 […]

View All
Latest News

New Citations | Research in Motion

Physiological researchers been studying the lower body through examining impacts of training, movement instruction, and innovative research measurements on an individual’s well being. The following articles represent recent developments in physiological research, moving our understanding of lower limbs and the body as a whole forward, one step at a time. The Importance of Form Improper […]

New Citations | Computer-Human Interaction

Technology is more interactive in a multitude of contexts, from completing tasks at work, looking for help online, to leisurely activities like news and video streaming. Understanding how to improve interaction between humans and computers can hold benefits in multiple situations. The following are recent human-computer interaction (HCI) studies. The Eyes Have It Nasser et al. […]

Read All
Request a Demonstration
Request a Demonstration