BIOPAC® Systems, Inc. Logo

Wireless Goniometers – BioNomadix

BioNomadix®: Physiology Where, When, and How You Want

Transducer for wireless, wearable physiology

Request More Info
View Cart “BioNomadix 2CH Wireless Goniometry Amplifier” has been added to your cart.
BioNomadix Goniometer 110mm Transducer
Part #: BN-GON-110-XDCR, BN-GON-150-XDCR, BN-GON-F-XDCR

110 mm twin-axis goniometer with adapter (BN-ADAPTER-GON) for wireless transmission using dual-channel BioNomadix Goniometry Amplifier (BN-GONIO)

Use the 110 mm BioNomadix Goniometer to simultaneously measure angles in up to two planes of movement. The goniometer has two separate output connectors, one measures flexion/extension, the other radial/ulnar deviation. This twin-axis goniometer will use both transmitter channels to measure both axes simultaneously; when used to measure a single-axis joint such as the knee or elbow, or when measuring a single plane of a twin-axis joint, simply connect one channel, the other input remains available for a second single-axis measurement from another goniometer or torsiometer.

See More...

BioNomadix 110 mm Goniometer
View Spec PDF

Are You Looking for These?

Part #: N/A
Categories: BioNomadix Wireless Physiology - Research
Subcategories: Transducers - Research

Alternatives
For the same Platform

Equivalents
With a different Platform

Details

Compatibility


Goniometers have a telescopic endblock that compensates for changes in distance between the two mounting points as the limb moves. The gauge mechanism allows for accurate measurement of polycentric joints. Goniometers attach to the body using TAPE2 medical adhesive tape.

BioNomadix goniometers and torsiometers are ideal for quick and accurate measurement of joint movement in multiple planes. Sensors are extremely robust, lightweight and flexible, and can be comfortably worn undetected under clothing, without hindering the actual movement of the joint. Twin-axis goniometers and single-axis torsiometers provide improved mechanical integrity and electrical performance.

The following list of typical uses is for guidance only…select sensor size such that the sensor is capable of reaching across the joint so that the endblocks can be mounted where least movement occurs between the skin and underlying skeletal structure.

  • BN-GON-110-XDCR – elbow or ankle – flexion/extension, or dorsiflexion/plantarflexion and inversion/eversion
  • BN-GON-150-XDCR – knee or hip – flexion/extension and valgus/varus, or flexion/extension and abudction/adduction
  • BN-TOR-110-XDCR – neck – axial rotation
  • BN-TOR-150-XDCR – forearm – pronation/supination
  • BN-GON-F-XDCR – finger (DIP, PIP, MCP) or toe – flexion/extension

Suggested reading for additional information on goniometry

Legnani G, Zappa B, Casolo F, Adamini R, Magnani PL. A model of an electro-goniometer and its calibration for biomechanical applications. Med Eng Phys. 2000 Dec;22(10):711-22.

Videos

Integrating BIOPAC Research Systems | Data Acquisition & Analysis

Support

Downloads/Resources

Knowledge Base

Recommended Items

Spotlight On
NIRS Experiment License

fNIRS Lesson License

Add fNIRS Lessons to a C Series Imager Record NIRS measurements from the forehead and the forearm at two wavelengths, 730 nm for deoxy-Hb and 850 nm for oxy-Hb. Students embark on real-world NIRS research using a student-friendly approach in these four guided lessons covering nine experiments. COBI Modern makes NIRS experimentation easy for students […]

View All
Latest News

New Citations | BIOPAC in EDA Research

Researchers utilize electrodermal activity (EDA) data in a wide array of protocols. These recent studies join thousands of BIOPAC citations for EDA and represent just a few of BIOPAC’s hardware options for wired, wireless, logged, or MRI protocols with reusable or disposable EDA accessories and AcqKnowledge software solutions for Automated EDA Analysis Routines and EDA Measurement Tools. Caffeine Delivery […]

EDA Guide Available

BIOPAC’s comprehensive EDA Guide provides an introduction to Electrodermal Activity (EDA or GSR) and details topics including: EDA Complex: SCL, SCR, tonic, phasic, specific SCR, non-specific SCR Participant Prep & Electrode Placement Data Recording tips Automated EDA Analysis Routines Digital input to Stim Events Stim-Response Analysis Derive Phasic EDA from Tonic Event-related EDA Analysis Locate […]

Read All
Request a Demonstration
Request a Demonstration