BIOPAC® Systems, Inc. Logo

A03 Frog Sciatic Nerve

View Cart “Nerve Chamber Cables” has been added to your cart.
This BSL PRO lesson describes the hardware and software setup necessary to record Compound Action Potentials (CAP) from a dissected frog sciatic nerve. For a specific procedure on isolating and removing the frog sciatic nerve, please refer to PRO Lesson A01 Frog Preparation.

Experimental Objectives

  1. To record the CAP of the frog sciatic nerve and measure the latent period.
  2. To record the effect, on the amplitude of the CAP, of subthreshold, threshold, submaximal, maximal, and supramaximal stimulation of the sciatic nerve.
  3. To record the effects of temperature on the velocity of nerve impulse conduction.
  4. To record the effect on the ability of the nerve to conduct impulses before and after the application of a local anaesthetic.
  5. * To estimate the refractory period of the nerve.
  6. * To explore the relationship between stimulus strength and duration.
  7. * To determine average conduction velocity.

* These objectives are covered in the introductory text and recording template for BSL 4.0.1 or above only.

Tasks Performed by the Student

  1. Optional: Use string as an experimental control to record and examine Stimulus Artifact.
  2. Stimulate the nerve at subthreshold, threshold, submaximal, maximal, and supramaximal levels.
  3. Irrigate the nerve with warmed Ringer’s and then stimulate until Threshold is observed.
  4. Irrigate the nerve with cold Ringer’s and then stimulate until Threshold is observed.
  5. Saturate the nerve with a nerve blocker and then stimulate until Threshold is observed.

Videos

Biopac Student Lab Student Download

Student Prep & Distance Learning

Click the link(s) below for sample data and/or lesson procedure video(s), BSL PRO Lesson procedures (PDF) for human lessons*, and graph template files (*.gtl) for BSL PRO Lessons. If more than one .gtl is available, download the .gtl with the _suffix to match BSL version and hardware.

Lesson Hardware

This lesson requires a Biopac Student Lab (BSL) System and the following hardware. If your BSL System does not include all hardware items, expand your system by selecting required items below. For more details, review the Lesson: L# BSL Lessons - see the Lab Manual or launch BSL; A# and H# BSL PRO Lessons, click the PDF link above to review full setup, recording, and analysis procedures.

Item Name Cart
NERVE1 Nerve Cond Chamber w/drain+lid Add to Cart
ELPAD Abrasive Pads 10/pk Add to Cart
BSLCBL2A Stim - BSLSTM to 2 mm ban Add to Cart
BSLCBL4B Record, 3-lead w/2-mm banana Add to Cart
OUT3 BNC adapter for MP36 built-in stim Add to Cart
Spotlight On
free BIOPAC webinar

Electrodermal Activity Data | Intro to Recording & Analysis

This EDA webinar will cover recording techniques and strategies for optimizing electrodermal activity data quality. Emphasis will focus on signal quality for in-lab and remote recording applications, including techniques for capturing event triggers for event-related applications.

You will learn how to
– Record great EDA data
– Prepare data for analysis
– Identify and remove artifact from data
– Use AcqKnowledge automated routines
– Run Batch processing

Watch On Demand

Register Now
Latest News

New Citations | BIOPAC in EDA Research

Researchers utilize electrodermal activity (EDA) data in a wide array of protocols. These recent studies join thousands of BIOPAC citations for EDA and represent just a few of BIOPAC’s hardware options for wired, wireless, logged, or MRI protocols with reusable or disposable EDA accessories and AcqKnowledge software solutions for Automated EDA Analysis Routines and EDA Measurement Tools. Caffeine Delivery […]

EDA Guide Available

BIOPAC’s comprehensive EDA Guide provides an introduction to Electrodermal Activity (EDA or GSR) and details topics including: EDA Complex: SCL, SCR, tonic, phasic, specific SCR, non-specific SCR Participant Prep & Electrode Placement Data Recording tips Automated EDA Analysis Routines Digital input to Stim Events Stim-Response Analysis Derive Phasic EDA from Tonic Event-related EDA Analysis Locate […]

Read All
Request a Demonstration
Request a Demonstration