

fNIR Devices Functional Optical Brain Imaging Systems

AFFORDABLE, PORTABLE COGNITIVE ASSESSMENT CONTINUOUS WAVE FNIR SPECTROSCOPY

• UP TO 54 OPTODES SIMULTANEOUSLY RECORD 3 SUBJECTS **fNIR** WIRED AND WIRELESS SYSTEMS ADULT AND PEDIATRIC SENSORS 3355 0 3000 0 3000 0 3000 0 3000 0 200¹ 0 200¹ 0 200¹ 0 200¹ 0 200¹ 238 3660 2 338 36562 338 3660 7 338 *FNIR* Model 2000 NEW! MODEL 2000 SERIES Easy Setup ... Comfortable ... Noninvasive

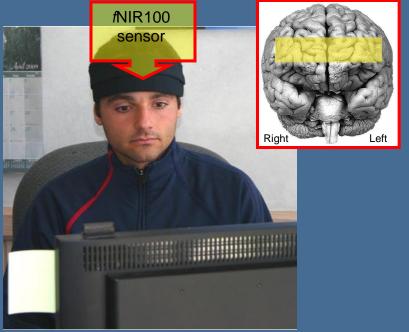
fNIR Devices Functional Optical Brain Imaging Systems

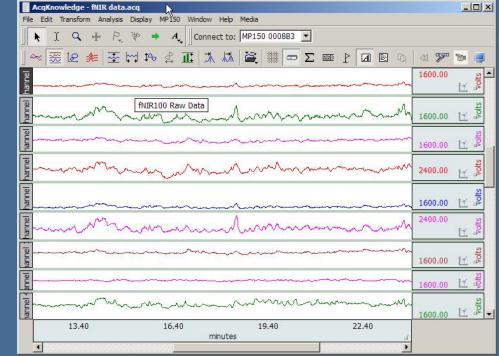
RESEARCH

WWW, BIOPAC, COM

fNIR is an optical imaging technology that measures neural activity and hemodynamic response in the prefrontal cortex. The subject wears a sensor on the forehead that includes four IR light sources and ten detectors that are mounted in a flexible band. The fNIR sensor detects oxygen levels in the prefrontal cortex and provides real-time values for oxy-hemoglobin and deoxygenated hemoglobin. It provides a continuous and real-time display of the oxygen changes as the subject performs different tasks.

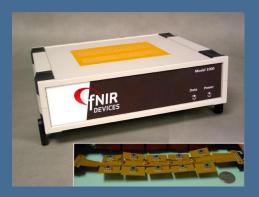
The *f*NIR data combines with other physiological variables such as ECG, respiration, cardiac output, blood pressure, electrodermal activity and stimulus response markers. Acq*Knowledge* software provides automated analysis tools for event related potentials and ensemble averaging. Combining the fNIR data with the other physiological signals provides researchers with a detailed subject assessment.

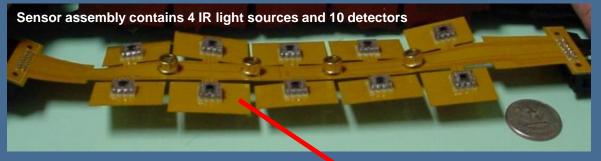

The fNIR100 stand-alone functional brain imaging system for continuous NIR spectroscopy (NIRS) provides an in-lab cognitive function assessment. It eliminates a great many of the drawbacks of a functional MRI. The subject can sit in front of a computer and take a test or perform mobile tasks. The system interfaces with most stimulus presentation systems such as E-Prime, SuperLab, and BIOPAC's range of Virtual Reality systems.



Functional Near-Infrared Spectroscopy [fNIR] for natural environments & field conditions...

Emerging technology to monitor cortical hemodynamic changes in response to brain activation

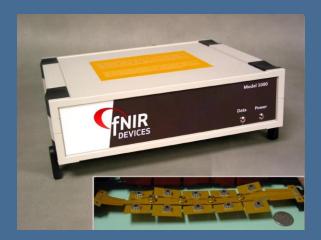

- Safe, affordable, portable
- Noninvasive, minimally intrusive, rugged



fNIR - Overview of the system

Head Piece

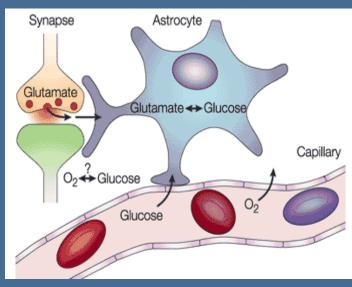
Operator's Monitor



*f*NIR - Overview of the system

The fNIR device provides relative change in hemoglobin levels, calculated using a modified Beer-Lamber law.

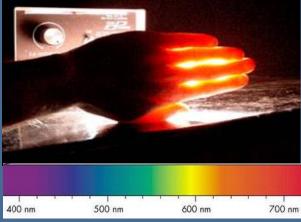
- Oxygenated hemoglobin change: delta O2Hb (µmol/L)
- Deoxygenated hemoglobin change: delta HHb (µmol/L)
- Total hemoglobin change: delta cHb (µmol/L)

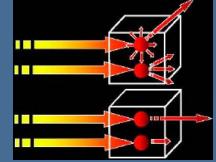


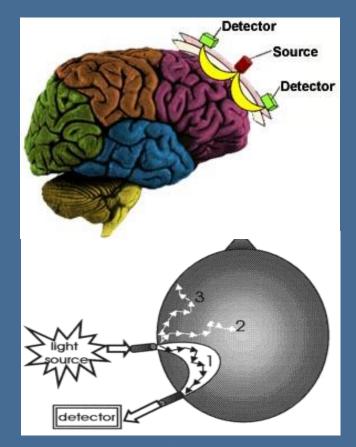
Principles of *f*NIR I

Neural Activity & Hemodynamic Response

Oxy-Hb and deoxy-Hb are correlates of brain activity through oxygen consumption by neurons

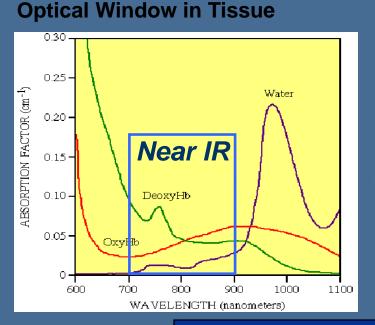

- Neurons consume energy (glucose) when activated
- Oxygen is required to metabolize the glucose
- As clusters of neurons are activated, there is an increased need for oxygen in that area
- Oxygen is transported to neural tissue via oxy-hemoglobin in the blood
- The oxygen exchange occurs in the capillary beds
- As oxy-hemoglobin gives up oxygen to the neural tissue, it is transformed into deoxygenated hemoglobin

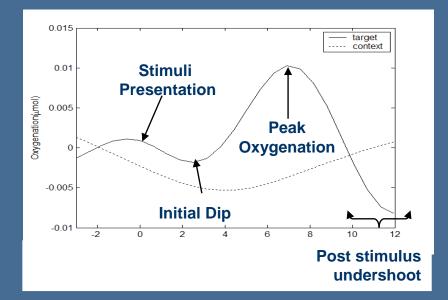


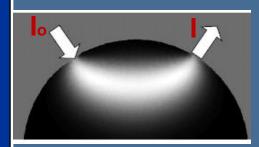

Principles of *f*NIR II Photon Migration in Tissue

Photons that enter the tissue undergo two types of interaction:

- Scattering (cell membranes)
- Absorption (Hb,HbO₂water)


H Obrig, R Wenzel, M Kohl, S Horst, P Wobst, J Steinbrink, F Thomas, A Villringer. Near-infrared spectroscopy: does it function in functional activation studies of the adult brain? International Journal of Psychophysiology 35(2-3):125-142, 2000




Principles of *f*NIR III

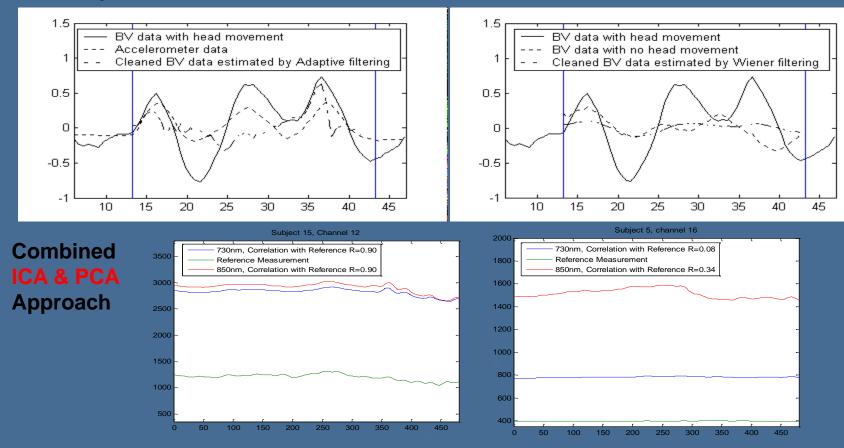
Modified Beer-Lambert Law

$$I = I_0 10^{-(\alpha_{HB}C_{HB} + \alpha_{HBO_2}C_{HBO_2})L} .G$$

$$\Delta OD = \log_{10} \frac{I_B}{I} = (\alpha_{HB}\Delta C_{HB} + \alpha_{HBO_2}\Delta C_{HBO_2})L$$

$$Oxygenation = \Delta C_{HbO2} - \Delta C_{Hb}$$

$$BloodVolume = \Delta C_{HbO2} + \Delta C_{Hb}$$



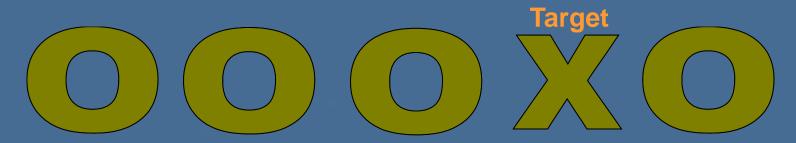
fNIR Signal Processing

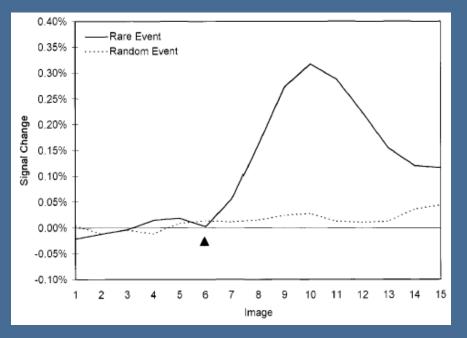
Artifact Cancellation (Motion Artifact Removal)

Adaptive Filter with Accelerometer

Wiener Filter without Accelerometer

Izzetoglu M, Devaraj A, Bunce S, Onaral B, "Motion Artifact Cancellation in NIR Spectroscopy Using Wiener Filtering", *Accepted to IEEE Transaction on BME*





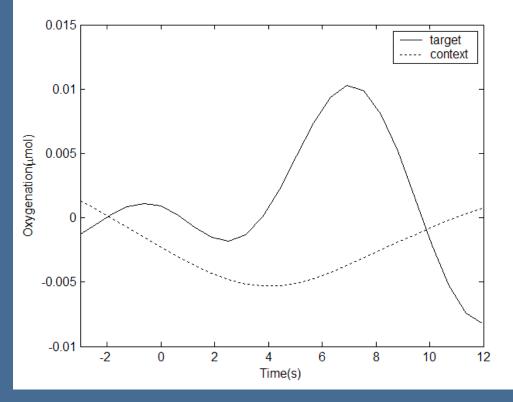
Assessment of Cognitive Function

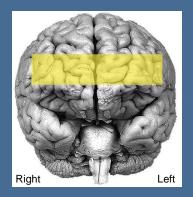
ATTENTION Target Categorization

fMRI Results

Infrequent Events Transiently Activate Human Prefrontal and Parietal Cortex as Measured by Functional MRI Gregory Mccarthy, Marie Luby, John Gore, And Patricia Goldman-Rakic. *J. Neurophysiol.* 77: 1630– 1634, 1997.

Courtesy of Dr. Scott Bunce

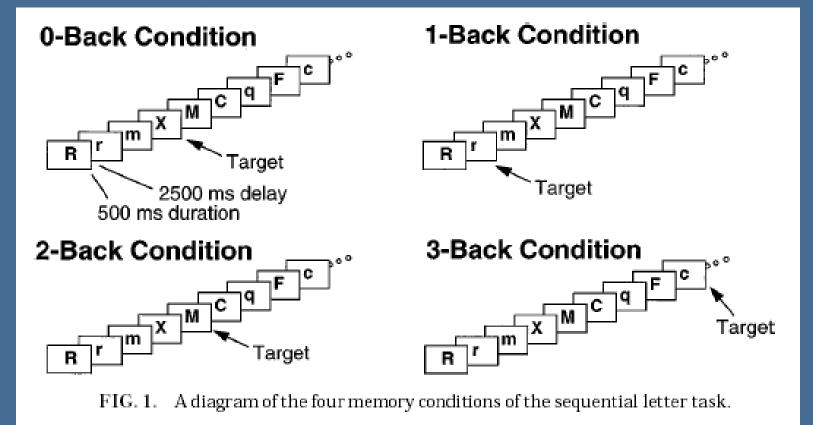



Assessment of Cognitive Function

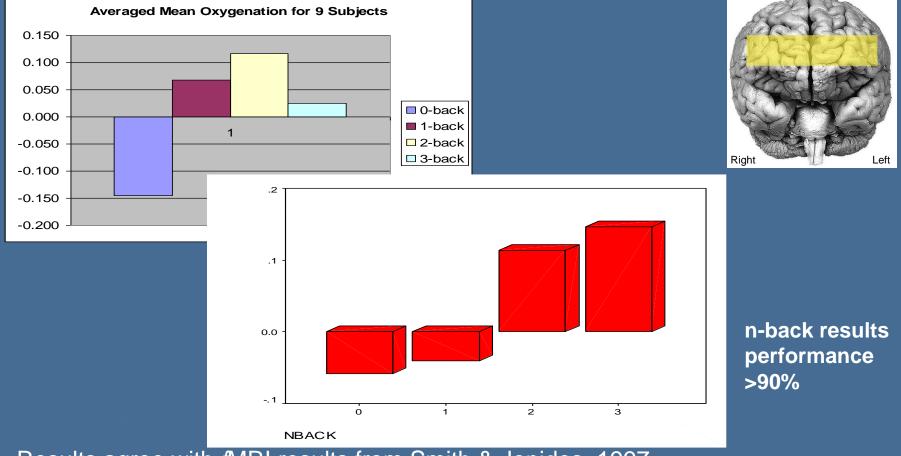
ATTENTION Target Categorization (Cont'd)

WWW.BIOPAC.COM

fNIR Data


Izzetoglu M, Izzetoglu K, Bunce S, Ayaz, H, Devaraj A, Onaral B, Pourrezaei K "Functional Near Infrared Neuroimaging", Accepted to IEEE Transaction on Neural Systems and Rehabilitation Engineering – Special Issue on Neural Engineering

Assessment of Cognitive Function Working Memory (n-back Task)


Courtesy of Dr. Scott Bunce

Assessment of Cognitive Function Working Memory (n-back Task)

Results agree with fMRI results from Smith & Jonides, 1997.

Izzetoglu M, Bunce S, Onaral B, "Single Trial Hemodynamic Response Estimation in Event Related fNIR Spectroscopy", *Proc.* of Optical Society of America Conference, 2003

fNIR APPLICATION AREAS

- Human Performance Assessment
- Depth of Anesthesia Monitoring
- Pain Assessment
- Brain Computer Interface
- Virtual Reality
- Neurorehabilitation
- Autism
- Credibility Assessment (lie detection)

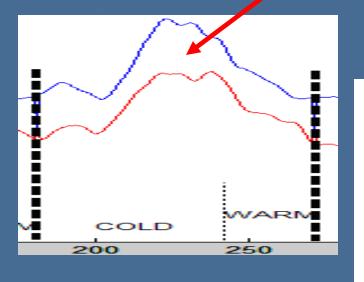
Human Performance Assessment

To use physiological measures based on *f*NIR to predict changes in cognitive workload during a complex cognitive task.

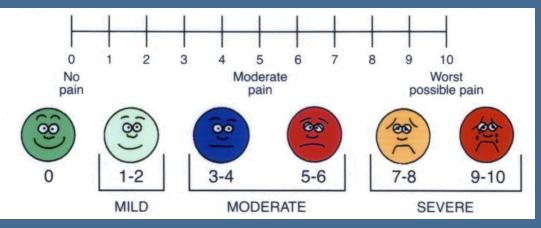
Depth of Anesthesia Monitoring

Brain Function Monitor for Intra-operative Awareness During Surgery

*f*NIR Awareness Monitor

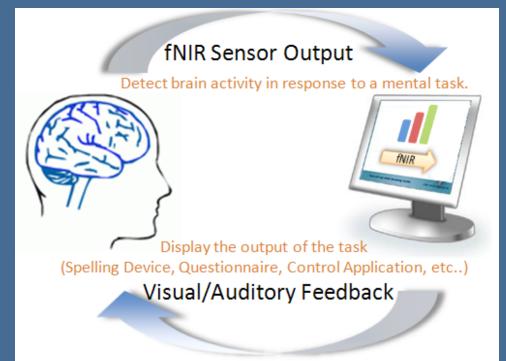


Pain Assessment


Brain monitoring system to assess:

- Chronic pain
- Response to pain medication

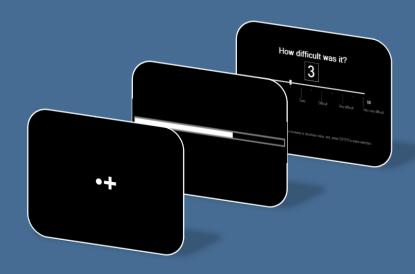
Objective assessment of brain response to pain stimulus



Brain Computer Interface ALS, Spinal Cord Injury, Paralysis...

Target Subject Population:

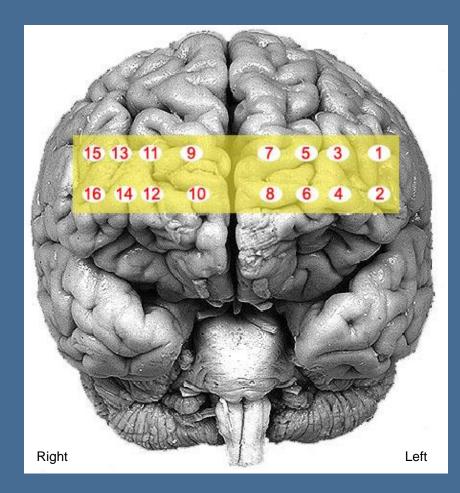
- Amyotrophic Lateral Sclerosis (ALS)
- Spinal Cord Injuries/Paralysis
- Cerebral Palsy, Muscular Dystrophy
- Brainstem Stroke, and others...



Gaming and Immersive Environments Enhance 3D experience by enabling users to manipulate and control objects by thought

Neurorehabilitation

Quantitative measure to assess the cognitive impairments of brain injury subjects in their everyday life activities.

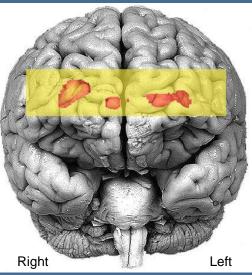


Autism

To understand the neurobiological deficits underlying autism as they relate to early predictors of the disorder as well as optimal treatment options.

The *f*NIR100 system is *suitable* for studies in children and adolescents with autism, because

- fNIR100 is not as physically confining as other imaging techniques, such as fMRI, and
- allows for more movement in subjects during imaging



Credibility Assessment Finding neural correlates of intentional deception

In a modified version of the Guilty Knowledge Task, where participants attempted to conceal the identity of a playing card, results revealed increased activation in bilateral inferior frontal gyri (BA 47/45) and middle frontal gyri (BA 46/10) when participants were lying. Truth

Lie

Contact BIOPAC about fNIR Devices Functional Optical Brain Imaging Systems

www.biopac.com info@biopac.com (805) 685-0066 8:00AM - 4:30PM PT

fNIR System	Туре	Max CH†	Included Sensor	Software (*pre- loaded)	Computer/Stand	TTL	Isolation
fNIR103C	Tethered Imager 2000C	18	1 x RXFNIR-2000-5 + 1 x RXFNIR-CBL- 2000L	fNIRSoft Standard and COBI		1 TTL	n/a
fNIR203C	Tethered Imager 2000C	18	3 x RXFNIR-2000-18 + 1 x RXFNIR-CBL- 2000L + 1 x RXFNIR-CBL- 2000R	fNIRSoft Standard and COBI		1 TTL	n/a
fNIR303C	Tethered Imager 2000C	18	3 x RXFNIR-2000-18 + 1 x RXFNIR-CBL- 2000L + 1 x RXFNIR-CBL- 2000R	fNIRSoft Standard and COBI	Tablet Style Computer + Caddy	1 TTL	n/a
fNIR103S	Tethered Imager 2000S	54†	3 x RXFNIR-2000-18 + 1 x RXFNIR-CBL- 2000L + 1 x RXFNIR-CBL- 2000R	fNIRSoft Pro and COBI		1 TTL	n/a
fNIR203S	Tethered Imager 2000S	54†	3 x RX-2000-18 + 1 x RXFNIR-CBL- 2000L + 1 x RXFNIR-CBL- 2000R	fNIRSoft Pro and COBI	Laptop + Caddy	3 TTL	n/a
fNIR303S	Tethered Imager 2000S	54 †	3 x RX-2000-18 + 1 x RXFNIR-CBL- 2000L + 1 x RXFNIR CBL- 2000R 2 X RX-2000-5 + 2 X RX-2000-6 + FNIR-PHANTOM	fNIRSoft Pro and COBI	Laptop + All-In-one Computer + Pole Cart with Shelf	3 TTL, 1 Serial, 1 Parallel	n/a
fNIR103M	Wireless Imager 2000M	18	3 x RX-2000-18 + 1 x RXFNIR-CBL- 2000L + 1 x RXFNIR CBL- 2000R + US/EU Power Adapter	fNIRSoft Pro and COBI		1 TTL	n/a
fNIR203M	Wireless Imager 2000M	18	3 x RX-2000-18 + 1 x RXFNIR-CBL- 2000L + 1 x RXFNIR CBL- 2000R + US/EU Power Adapter	fNIRSoft Pro and COBI	Notebook/Tablet Style Computer	1 TTL	n/a
fNIR303M	Wireless Imager 2000M	18	3 x RX-2000-18 + 1 x RXFNIR-CBL- 2000L + 1 x RXFNIR CBL- 2000R 2 X RX-2000-5 + 2 X RX-2000-6 + FNIR-PHANTOM + US/EU Power Adapter	fNIRSoft Pro and COBI	Notebook/Tablet Style Computer	1 TTL	n/a
fNIR103P	Wireless Pediatric Imager 2000P/1200	4	RXFNIR-PED or RXFNIR-4 for Adults	fNIRSoft Standard and COBI*		-	n/a
fNIR103E	Tethered Imager 2000E	6	1 x RXFNIR-2000-6 + 1 x RXFNIR-CBL- 2000L	fNIRSoft Education and COBI			n/a