HEART SOUNDS

- *Cardiac valve functions*
- *Relationship between electrical and mechanical events of the cardiac cycle*

DATA REPORT

Student’s Name: __
Lab Section: __
Date: __

Subject Profile

Name:__ Height: ________ Gender: Male / Female
Age:__ Weight:________

Note: This Data Report assumes that all lesson recordings were performed, which may not be the case for your lab. Please disregard any references to excluded recordings.

I. **Data and Calculations**

A. **Heart Sound Measurements**

Complete Table 17.1 with “Seated, at rest” and “After exercise” data and complete the required calculations.

<table>
<thead>
<tr>
<th>Selected area</th>
<th>Measurement</th>
<th>Seated, at rest</th>
<th>After exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At Rest</td>
<td>Inhalation</td>
<td>Exhalation</td>
</tr>
<tr>
<td>R-wave to next R-wave</td>
<td>1</td>
<td>BPM</td>
<td></td>
</tr>
<tr>
<td>R-wave to 1st heart sound</td>
<td>1</td>
<td>Delta T</td>
<td></td>
</tr>
<tr>
<td>R-wave to 2nd heart sound</td>
<td>1</td>
<td>Delta T</td>
<td></td>
</tr>
<tr>
<td>1st to 2nd heart sound</td>
<td>1</td>
<td>Delta T</td>
<td></td>
</tr>
<tr>
<td>2nd sound to next 1st sound</td>
<td>1</td>
<td>Delta T</td>
<td></td>
</tr>
<tr>
<td>1st heart sound interval</td>
<td>1</td>
<td>F-P</td>
<td></td>
</tr>
<tr>
<td>2nd heart sound interval</td>
<td>1</td>
<td>F-P</td>
<td></td>
</tr>
</tbody>
</table>

B. **Description of Heart Sounds**

Note: You may copy and paste descriptions from the Lesson 17 journal below.

Describe the sounds of each of the following heart valves in terms of intensity (loudness,) pitch (frequency) and duration (length). Begin with the aortic valve and compare others to it. This is a subjective description.

Aortic ________________________________

Pulmonic ________________________________

Tricuspid ________________________________

Mitral ________________________________
II. Questions

1. Relative to the electrical and mechanical events of the cardiac cycle, what do each of the measurements in Table 17.1 represent?

 BPM:

 Delta T: R-wave to 1st sound ________________________________
 R-wave to 2nd sound ________________________________
 1st to 2nd ________________________________
 2nd sound to next 1st sound ________________________________

 P-P: 1st sound ________________________________
 2nd sound ________________________________

2. Note whether the measured values in Table 17.1 increased, decreased or did not change from the resting value when heart rate increased.

 Table 17.2

<table>
<thead>
<tr>
<th>Measured Value</th>
<th>Increased</th>
<th>Decreased</th>
<th>No Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta T</td>
<td>R-wave to 1st sound</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-wave to 2nd sound</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1st to 2nd</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2nd sound to next 1st sound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-P</td>
<td>1st sound</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2nd sound</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Explain why each of these would change.

 __
 __
 __
 __
 __
 __
 __

4. Briefly describe the cause of the turbulence associated with each of the four heart sounds:

 1st sound __
 2nd sound __
 3rd sound __
 4th sound __

5. Which of the four heart sounds is loudest? Give a reason.

 __
6. Does ventricular ejection occur during ventricular depolarization or during ventricular repolarization? Refer to your experimental record before you answer, and explain your answer.

7. Which cardiac valves close during ventricular systole? Which cardiac valves close during ventricular diastole?
 Systole: __________________________
 Diastole: __________________________

8. Define “systolic murmur” and give one example of a cause.

9. Define “diastolic murmur” and give one example of a cause.

10. Define “cardiac cycle.”

11. Briefly characterize the relationship between the electrical events and the mechanical events of the cardiac cycle.

III. OPTIONAL Active Learning Portion

A. **Hypothesis**

B. **Materials**

C. **Method**

D. **Set Up**

E. **Experimental Results**

End of Lesson 17 Data Report