

5.03.11

Application Note 264 Flow Control via User Interaction with a Graph File UI

Scripting functionality is available through an optional license available with AcqKnowledge 4.1.1
or above. The Scripting license must be authorized to access Script functionality. Scripting is
available for Windows 7 or Vista and Mac OS X 10.4-10.6. Rich dialog development is supported
for users with Qt SDK 4.5.0 or higher.

The Scripting license enables the Script menu, adds the Calculation channel Preset “Run Macro,”
links the BIOPAC Basic Reference under Help, and adds Preferences for Scripting.

This application note discusses program flow control that is predicated on a user’s interaction with graphical interfaces,
namely, buttons, scroll lists, and dialog boxes.

Flow Control within BIOPAC Basic Scripting (BBS) is described in the manual as follows:

“Macro code is normally executed in linear order from the first line of a macro function to the last line
of a function, one line of code at a time. Flow control operations allow for execution to be changed to
a different location. This may be used to create loops, call other functions, and halt the interpreter.”

As such, Flow Control is limited to the following:

 Goto - jump to a label within the script

 Call “fnName” - call to a function routine

 Runscript “filename” “fnName” - loads a new script

 Halt - stop all macro execution

 Break - stop execution of current macro function, returns control to
calling macro function

 Eval “macro_code” - executes a single line of macro code

 Wait - suspends macro execution for a specified period of time

Given the present list of commands for flow control, there is no function/command within the BBS nor in the
AcqKnowledge programming environment that allows the user to suspend execution of the program/script to await user
interaction with a graph file, be it: selection of data within a channel, transform invocation, or the activation of UI widgets
(buttons or combo boxes). This is particularly tricky when a programmer wishes to establish a loop structure of some sort
that branches on user input, for instance, Continue or Cancel?

For loop constructs predicated on user input, the flow control is not constructed using individual command statements but
on macro function calls. An example will illustrate.

Figure 1 shows a traditional control loop where the calling function “FindAvg” calls upon “RunEnsemble.” Within
RunEnsemble the graph file is modified by the installation of UI buttons (Figure 2). Depending on which button is
depressed, the averaging commences or not.

On execution and upon entering the function “RunEnsemble”, one would presume that the program would “wait” until the
user has depressed a button to drive the direction of the program; either to “ProcessPeakSelection” or “Cancel.” However,
there is no command to force the program to wait, and the next lines of code executed are the increment counter and the
Goto command back at the calling function “FindAvg.” Even though the buttons are active and awaiting action, the
program flow has left the function “RunEnsemble”. What to do?

Basically a structuring of the loop is required. Figure 3 shows how this is done.

The key idea is that the calls to the macro functions are configured into a control loop. Also key is that those functions that
have UI widgets that await user action, are not followed by any executable statements, they are wholly contained within a
function block. In addition, all variables used at decision points should be either global or at script level so that all
functions are cognizant of the variables’ existence and value.

Page 1 of 3

BIOPAC Systems, Inc. App Note 264: Flow Control via Graph File UI www.biopac.com

Page 2 of 3

Function “FindAvg” serves and the entry point into the loop and function “ProcessPeakSelection” serves as the decision
point and terminus of the loop. Figure 4 shows in greater detail how this “function-loop” is implemented.

Loops with this type of format will facilitate scripts that desire user interaction with graph files and UI widgets.

Function: FindAvg

Figure 1 Loop structure with the calling function “FindAvg” calling “RunEnsemble”

Function: RunEnsemble

Figure 2 Called function “RunEnsemble”

Restructured Control Loop

Figure 3 Restructuring of the Control Loop to allow for using interaction

BIOPAC Systems, Inc. App Note 264: Flow Control via Graph File UI www.biopac.com

Page 3 of 3

 Function: FindAvg

Figure 4a Restructuring the control loop within the calling function

 Function: RunEnsemble

Figure 4b Called function “RunEnsemble”

 Function: ProcessPeakSelection

Figure 4c Restructured function to act as a control loop terminus

