Introduction

Electrocardiography (ECG)

Lesson 1 ECG I

Electrocardiography
I. INTRODUCTION

The main function of the heart is to pump blood through two circuits:

1. **Pulmonary circuit**: through the lungs to oxygenate the blood and remove carbon dioxide, and
2. **Systemic circuit**: to deliver oxygen and nutrients to tissues and remove carbon dioxide.

Because the heart moves blood through two separate circuits, it is sometimes described as a dual pump.

In order to beat, the heart needs three types of cells:

1. Rhythm generators, which produce an electrical signal (SA node or normal pacemaker);
2. Conductors to spread the pacemaker signal; and
3. Contractile cells (myocardium) to mechanically pump blood.

The Electrical and Mechanical Sequence of a Heartbeat

The heart has specialized pacemaker cells that start the electrical sequence of depolarization and repolarization. This property of cardiac tissue is called inherent rhythmicity or automaticity. The electrical signal is generated by the sinoatrial node (SA node) and spreads to the ventricular muscle via particular conducting pathways: internodal pathways and atrial fibers, the atrioventricular node (AV node), the bundle of His, the right and left bundle branches, and Purkinje fibers (Fig. 5.1).

When the electrical signal of depolarization reaches the contractile cells, they contract—a mechanical event called systole. When the repolarization signal reaches the myoocardial cells, they relax—a mechanical event called diastole. Thus, the electrical signals cause the mechanical pumping action of the heart; mechanical events always follow the electrical events (Fig. 5.2).

The SA node is the normal pacemaker of the heart, initiating each electrical and mechanical cycle. When the SA node depolarizes, the electrical stimulus spreads through atrial muscle causing the muscle to contract. Thus, the SA node depolarization is followed by atrial contraction.

The SA node impulse also spreads to the atrioventricular node (AV node) via the internodal fibers. (The wave of depolarization does not spread to the ventricles right away because there is nonconducting tissue separating the atria and ventricles.) The electrical signal is delayed in the AV node for approximately 0.20 seconds when the atra contract, and then the signal is relayed to the ventricles via the bundle of His, right and left bundle branches, and Purkinje fibers. The Purkinje fibers relay the electrical impulse directly to ventricular muscle, stimulating the ventricles to contract (ventricular systole). During ventricular systole, ventricles begin to repolarize and then enter a period of diastole (Fig. 5.2).

Although the heart generates its own beat, the heart rate (beats per minute or BPM) and strength of contraction of the heart are modified by the sympathetic and parasympathetic divisions of the autonomic nervous system.

- The sympathetic division increases automaticity and excitability of the SA node, thereby increasing heart rate. It also increases conductivity of electrical impulses through the atrioventricular conduction system and increases the force of atrioventricular contraction. Sympathetic influence increases during inhalation.
- The parasympathetic division decreases automaticity and excitability of the SA node, thereby decreasing heart rate. It also decreases conductivity of electrical impulses through the atrioventricular conduction system and decreases the force of atrioventricular contraction. Parasympathetic influence increases during exhalation.
The Electrocardiogram (ECG)

Just as the electrical activity of the pacemaker is communicated to the cardiac muscle, “echoes” of the depolarization and repolarization of the heart are sent through the rest of the body. By placing a pair of very sensitive receivers (electrodes) on other parts of the body, the echoes of the heart’s electrical activity can be detected. The record of the electrical signal is called an electrocardiogram (ECG). You can infer the heart’s mechanical activity from the ECG. Electrical activity varies through the ECG cycle as shown below (Fig. 5.2):

![Fig. 5.2 Components of the ECG (Lead II) & Electrical and mechanical events of the cardiac cycle](image)

The ECG represents electrical events of the cardiac cycle whereas Ventricular Systole and Ventricular Diastole represent mechanical events (contraction and relaxation of cardiac muscle, passive opening and closing of intracardiac valves, etc.). Electrical events occur quickly, mechanical events occur slowly. Generally, mechanical events follow the electrical events that initiate them. Thus, the beginning of ventricular diastole is preceded by the beginning of ventricular depolarization. In fact, in a normal resting Lead II, ventricular repolarization normally begins before the completion of ventricular systole in the same cardiac cycle. That is why the end of ventricular systole/beginning of ventricular diastole is marked in Fig. 5.2 about 1/3 of the way down the T-wave.

Because the ECG reflects the electrical activity, it is a useful “picture” of heart activity. If there are interruptions of the electrical signal generation or transmission, the ECG changes. These changes can be useful in diagnosing changes within the heart. During exercise, however, the position of the heart itself changes, so you cannot standardize or quantify the voltage changes.

Components of the ECG

The electrical events of the heart (ECG) are usually recorded as a pattern of a baseline (isoelectric line,) broken by a P wave, a QRS complex, and a T wave. In addition to the wave components of the ECG, there are intervals and segments (Fig. 5.2).

- The isoelectric line is a point of departure of the electrical activity of depolarizations and repolarizations of the cardiac cycles and indicates periods when the ECG electrodes did not detect electrical activity.
- An interval is a time measurement that includes waves and/or complexes.
- A segment is a time measurement that does not include waves and/or complexes.
Table 5.1 Components of the ECG & Typical Lead II Values

<table>
<thead>
<tr>
<th>Component</th>
<th>Measurement area...</th>
<th>Represent...</th>
<th>Duration (seconds)</th>
<th>Amplitude (millivolts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>begin and end on isoelectric line (baseline); normally upright in standard limb leads</td>
<td>depolarization of the right and left atria.</td>
<td>0.07 – 0.18</td>
<td>< 0.25</td>
</tr>
<tr>
<td>QRS complex</td>
<td>begin and end on isoelectric line (baseline) from start of Q wave to end of S wave</td>
<td>depolarization of the right and left ventricles. Atrial repolarization is also part of this segment, but the electrical signal for atrial repolarization is masked by the larger QRS complex (see Fig. 5.2)</td>
<td>0.06 – 0.12</td>
<td>0.10 – 1.50</td>
</tr>
<tr>
<td>T</td>
<td>begin and end on isoelectric line (baseline)</td>
<td>repolarization of the right and left ventricles.</td>
<td>< 0.05 – 0.05</td>
<td>< 0.5</td>
</tr>
<tr>
<td>P-R</td>
<td>from start of P wave to start of QRS complex</td>
<td>time from the onset of atrial depolarization to the onset of ventricular depolarization.</td>
<td>0.12-0.20</td>
<td>0.5</td>
</tr>
<tr>
<td>Q-T</td>
<td>from start of QRS complex to end of T wave</td>
<td>time from onset of ventricular depolarization to the end of ventricular repolarization. It represents the refractory period of the ventricles.</td>
<td>0.32-0.36</td>
<td></td>
</tr>
<tr>
<td>R-R</td>
<td>from peak of R wave to peak of succeeding R wave</td>
<td>time between two successive ventricular depolarizations.</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>P-R</td>
<td>from end of P wave to start of QRS complex</td>
<td>time of impulse conduction from the AV node to the ventricular myocardium.</td>
<td>0.02 – 0.10</td>
<td></td>
</tr>
<tr>
<td>S-T</td>
<td>between end of S wave and start of T wave</td>
<td>period of time representing the early part of ventricular repolarization during which ventricle excite more or less uniformly excited.</td>
<td>< 0.20</td>
<td></td>
</tr>
<tr>
<td>T-P</td>
<td>from end of T wave to start of successive P wave</td>
<td>time from the end of ventricular repolarization to the onset of atrial depolarization.</td>
<td>0.0 – 0.40</td>
<td></td>
</tr>
</tbody>
</table>

*Notes: Tabled values represent results from a typical Lead II setup (wrist and ankle electrode placement) with Subject heart rate ~75 BPM. Values are influenced by heart rate and placement; values for torso placement would be different.

Leads

The particular arrangement of two electrodes (one positive, one negative) with respect to a third electrode (the ground) is called a lead. The electrode positions for the different leads have been standardized. For this lesson, you will record from Lead II, which has a positive electrode on the left ankle, a negative electrode on the right wrist, and the ground electrode on the right ankle. Typical Lead II values are shown in Table 5.1.

The dominant ECG component in any normal standard lead record is the QRS complex. Usually, in a Lead II record the Q and S waves are small and negative and the R wave is large and positive as shown in Fig. 5.2. However, it is important to note many normal, normal and abnormal, determine the duration, form, rate, and rhythm of the QRS complex.

Abnormal factors include hyper- and hypothyroidism, ventricular hypertrophy (observed for example, in chronic valvular insufficiency,) morbid obesity, essential hypertension and many other pathologic states. A more detailed discussion of QRS changes in response to normal and abnormal factors requires an introduction to cardiac vectors, for which the reader is referred to Lesson 6.
Effects of the Resting Respiratory Cycle on Heart Rate

Temporary minor increases and decreases in heart rate associated with the resting respiratory cycle reflect heart rate adjustments made by systemic arterial and systemic venous pressure receptor (baroreceptor) reflexes in response to the cycling of intrathoracic pressure (Fig. 5.3).

When inspiratory muscles contract, pressure within the thorax (intrathoracic pressure) decreases, allowing thoracic veins to slightly expand. This causes a momentary drop in venous pressure, venous return, cardiac output, and systemic arterial blood pressure. The carotid sinus reflex normally decreases heart rate in response to a rise in carotid arterial blood pressure. However, the momentary drop in systemic arterial blood pressure during inspiration reduces the frequency of carotid baroreceptor firing, causing a momentary increase in heart rate.

When inspiratory muscles relax, resting expiration passively occurs. During early resting expiration, intrathoracic pressure increases causing compression of thoracic veins, momentarily increasing venous pressure and venous return. In response, systemic venous baroreceptors reflexively increase heart rate. However, the slight increase in heart rate is temporary because it increases cardiac output and systemic arterial blood pressure, which increases carotid baroreceptor firing causing heart rate to decrease.

The average resting heart rate for adults is between 60-80 beats/min. (Average 70 bpm for males and 75 bpm for females.) Slower heart rates are typically found in individuals who regularly exercise. Athletes are able to pump enough blood to meet the demands of the body with resting heart rates as low as 50 beats/min. Athletes tend to develop larger hearts, especially the muscle in the left ventricle—a condition known as left ventricular hypertrophy. Because athletes (usually) have larger and more efficient hearts, their ECGs may exhibit differences other than average resting heart rate. For instance, low heart rate and hypertrophy exhibited in sedentary individuals can be an indication of failing hearts but these changes are “normal” for well-trained athletes.

Because ECGs are widely used, basic elements have been standardized to simplify reading ECGs. ECGs have standardized grids of lighter, smaller squares and, superimposed on the first grid, a second grid of darker and larger squares (Fig. 5.4). The smaller grid always has time units of 0.04 seconds on the x-axis and the darker vertical lines are spaced 0.2 seconds apart. The horizontal lines represent amplitude in mV. The lighter horizontal lines are 0.1 mV apart and the darker grid lines represent 0.5 mV. In this lesson, you will record the ECG under four conditions.
II. EXPERIMENTAL OBJECTIVES

1) To become familiar with the electrocardiograph as a primary tool for evaluating electrical events within the heart.
2) To correlate electrical events as displayed on the ECG with the mechanical events that occur during the cardiac cycle.
3) To observe rate and rhythm changes in the ECG associated with body position and breathing.

III. MATERIALS

- BIOPAC Electrode Lead Set for MP41 (40EL)
- BIOPAC Disposable Electrodes (EL503), this lesson requires 3 electrodes
- Mat, cot or lab table and pillow for Supine position
- Biopac Student Lab System: BSL 4 software, MP41 hardware
- Computer System (Windows or Mac)
- Watch with second hand, stopwatch, or smartphone with timer

IV. EXPERIMENTAL METHODS

A. SETUP

FAST TRACK Setup

1. Set the MP41 dial to **OFF**.
2. **Plug the equipment in** as follows:
 - Electrode leads (40EL) → MP41
 - MP41 → computer USB port
3. Apply electrodes to clean skin (lotions, makeup and other skin products should be removed).
4. Attach three electrodes as shown in Fig. 5.6.

Setup continues…

Remove any jewelry on or near the electrode sites. Apply electrodes to clean skin.
Place one electrode on the medial surface of each leg, just above the ankle. Place the third electrode on the right anterior forearm at the wrist (same side of arm as the palm of hand).
For optimal electrode contact, place electrodes on skin at least 5 minutes before start of Calibration.

DISTRIBUTION PROHIBITED

SAMPLE FOR REVIEW ONLY
5. Clip the Electrode Lead Set (40EL) to the electrodes following the color code (Fig. 5.6).

6. RIGHT forearm = WHITE lead
7. RIGHT leg = BLACK lead (ground)
8. LEFT leg = RED lead

9. Start the BIOPAC Student Lab program.

10. Choose lesson “L05 - Electrocardiography (ECG) I” and click OK.

11. Type in a unique filename and click OK.

12. Optional: Set Preferences.
 - Choose File > Lesson Preferences.
 - Select an option.
 - Select the desired setting and click OK.

Fig. 5.6 Lead II Setup

The pinch connectors work like a small clothespin, but will only latch onto the nipple of the electrode from one side of the connector.

Start Biopac Student Lab by double-clicking the Desktop shortcut.

A folder will be created using the filename. This same filename can be used in other lessons to place your data in a common folder.

This lesson has optional Preferences for data and display while recording. Per your Lab Instructor's guidelines, you may set:

- **Grids**: Show or hide gridlines
- **Recording Length**: Duration of recording can be set from 30 seconds to 30 minutes. 30 minutes is the default setting.

END OF SETUP
B. MP41 CHECK & SIGNAL CHECK

The MP41 Check and Signal Check establishes the hardware’s internal parameters (such as gain, offset, and scaling) and is critical for optimal performance. This check must be performed prior to running the lesson, with electrodes connected and the MP41 dial set to the specified position.

FAST TRACK Calibration

MP41 Check
1. Set the MP41 dial to ECG/EOG.
2. Press and hold the Check pad on the MP41.
3. Click when the light is flashing.
4. Wait for the MP41 check to stop.
5. Let go of the Check pad.
6. Click Continue.

Signal Check
1. Click Check Signal.
2. Wait for the Signal Check to stop (8 sec).
3. Review the data.
4. Verify recording resembles the example data.
 - If similar, click Continue and proceed to Data Recording.
 - If necessary, click Redo Signal Check.

END OF MP41 SIGNAL CHECK

Detailed Explanation of Calibration Steps

Figure 5.7 MP41 Check prompt

Continue to hold the pad down until prompted to let go. The MP41 check procedure will last five seconds. The light should stop flashing when the Check pad is released. When the light stops flashing, click Continue.

The eight-second Signal Check recording should resemble Fig. 5.8. There should be a recognizable ECG waveform with a baseline at or near 0 mV, little EMG artifact and no large baseline drift.

Fig. 5.8 Example Calibration data

If recording does not resemble the Example Data

- If the data is noisy or flatline, check all connections to the MP unit.
- If the ECG displays baseline drift or excessive EMG artifact:
 - Verify electrodes are making good contact with the skin and that the leads are not pulling on the electrodes.
 - Make sure you are in a relaxed position.
- Click Redo Signal Check and repeat Steps 1 – 3 if necessary.
C. DATA RECORDING

FAST TRACK Recording

1. Prepare for the recording.
 - Review recording steps before proceeding.
 - Before clicking **Record**, set timer alarm on smartphone for 20 seconds.

Detailed Explanation of Recording Steps

You will record ECG under the following conditions:

- Supine (20 seconds)
- Seated (20 seconds)
- Deep breathing
- After exercise (60 seconds)

To work efficiently, read this entire section before recording, or review onscreen **Tasks** to preview recording steps in advance.

NOTE: This lesson works best if a second person assists the participant by inserting event markers and giving cues when each recording interval is completed. If no assistant is available, a solo participant keep track of the recording intervals by setting the timer function on a smartphone or other device prior to starting each recording.

Supine (Lying Down)

2. Get in supine position (lying down, face up) and relax (Fig. 5.9).

IMPORTANT: If recording this lesson alone, it is recommended that you place your computer within easy reach, so you can start and stop the recordings without changing positions.

3. Remain supine and relaxed, with eyes closed.
4. Start timer and click **Record**.
5. When the timer alarm sounds after 20 seconds, click **Suspend**.
6. Verify recording resembles the example data.
 - If similar, proceed to next recording.
 - If necessary, click **Redo**.
 - If all required recordings have been completed, click **Done**.

Position the electrode cables so that they are not pulling on the electrodes.

Fig. 5.9 Positioning (supine)

If performing lesson alone using a desktop computer, it will be necessary to click **Record** before getting into supine position and **Suspend** after getting up from supine position. In this case disregard the first and last 10 seconds of recorded data, as these portions will show movement artifact. Be sure to allow extra time to acquire at least 20 seconds of good uninterrupted supine data.

The ECG waveform should have a baseline at or near 0 mV and should not display large baseline drifts or significant EMG artifact. The Heart Rate (BPM) data will not be accurate until after the first two cardiac (ECG) cycles after which there should not be sporadic variations that go out of the visible range.

Fig. 5.10 Example Supine data
If recording does not resemble the Example Data

- If the data is noisy or flatline, check all connections to the MP unit.
- If the ECG displays excessive baseline drift or EMG artifact, or if the Heart Rate (BPM) data shows sporadic values:
 - Verify electrodes are making good contact with the skin and that the leads are not pulling on the electrodes.
 - Make sure you are in a relaxed position.
Click **Redo** and repeat Steps 1 – 6 if necessary. Note that once **Redo** is clicked, the most recent recording will be erased.

Seated

- **Review** recording steps.
- **Watch** example video in software.

8. Get up quickly and then settle into a seated position (Fig. 5.11).

IMPORTANT: If recording this lesson alone, place the computer within easy reach so you can click **Record** immediately after getting into seated position.

9. Once you are seated and still, start the timer and click **Resume**.
10. When the timer alarm sounds after 20 seconds, click **Suspend**.
11. Verify recording resembles the example data:
 - If similar, proceed to the next recording.
 - If necessary, click **Redo**.
 - If all required recordings have been completed, click **Done**.

Recording continues...

Sit with arms relaxed at side of body and hands apart in lap, with legs flexed at knee and feet supported for seconds 21–40.

In order to capture the heart rate variation, click **Record** as quickly as possible after sitting down.

Remain seated, relaxed, and breathing normally.

The data description is the same as outlined in Step 6.
Click **Redo** if necessary. You must return to the Supine position for at least 5 minutes before repeating Steps 7 – 11.
Note that once **Redo** is clicked, the most recent recording will be erased.
Deep Breathing

- **Review** recording steps.

12. **Click** **Resume**.

13. **Inhale** and **exhale slowly** and completely as possible for five prolonged (slow) breath cycles.
 - **Press F9** (Windows) or **esc** (Mac) at the start of each inhale and at start of each exhale.

14. **Click** **Suspend**.

15. **Verify recording** resembles the example data.
 - If **similar**, proceed to the next recording.
 - If necessary, **click** **Redo**.
 - If all required recordings have been completed, **click** **Done**.

After exercise

- **Review** recording steps.
- **Watch** example video in software.

16. **Before clicking** **Resume**, **set timer alarm** on smartphone for 60 seconds.

17. **Exercise to elevate heart rate**.
 - If electrode leads were unclipped, **clip them back on**.
 - Following exercise, sit down and relax.

18. Once you are seated and still, **start the timer** and **click** **Resume**.

19. **When the timer alarm sounds after 60 seconds**, **click** **Suspend**.

20. **Verify recording** resembles the example data.
 - If **similar**, proceed to optional recording section, or **click** **Done** if finished.
 - If necessary, **click** **Redo**.

Recording continues…

Remain seated for this recording.

Note It is important to breathe with long, slow, deep breaths to help minimize **EMG artifact**.

Label the keystroke (F9 Windows, esc Mac) event markers “**Inhale**” and “**Exhale**”. To label an event marker during or after the recording, click the marker to select it and enter text in the marker label region above the graph.

![Example Deep Breathing data](image)

Fig. 5.13 Example Deep Breathing data

The data description is the same as outlined in Step 9, with the following exception:

- The ECG data may exhibit some baseline drift during deep breathing, which is normal and unless excessive, does not necessitate **Redo**.

Click Redo and repeat Steps 15 – 20 if necessary. Note that once Redo is clicked, the most recent recording will be erased.

Perform an exercise to elevate your heart rate fairly rapidly, such as running up stairs, push-ups, or jumping-jacks.

Note: You may remove the electrode cable pinch connectors so that you can move freely, but **do not remove the electrodes**.

If you do remove the cable pinch connectors, you must reattach them following the precise color placement in Fig. 5.6 prior to clicking **Resume**.

When seated, your arms must be relaxed and at sides of body, with arms relaxed and feet supported.

In order to capture the heart rate variation, it is important that you resume recording as quickly as possible after performing the exercise. However, it is also important that you do not click **Resume** while exercising, or you will capture motion artifact.

![Example After Exercise data](image)

Fig. 5.14 Example After Exercise data

The data description is the same as outlined in Step 6, with the following exception:

- The ECG data may exhibit some baseline drift which is normal and unless excessive, does not necessitate **Redo**.

Click Redo and repeat Steps 16 – 20 if necessary. Note that once Redo is clicked, the most recent recording will be erased.
With this lesson you may record additional data segments by clicking Resume following the last recording segment. Design an experiment to test or verify a scientific principle(s) related to topics covered in this lesson. Although you are limited to this lesson’s channel assignments, the electrodes may be moved to different physical locations.

Design Your Experiment

Use a separate sheet to detail your experiment design, and be sure to address these main points:

A. **Hypothesis**
 - Describe the scientific principle to be tested or verified.

B. **Materials**
 - List the materials you will use to complete your investigation.

C. **Method**
 - Describe the experimental procedure—be sure to number each step to make it easy to follow during recording.

Run Your Experiment

D. **Set Up**
 - Set up the equipment and prepare for your experiment.

E. **Record**
 - Use the Resume and Suspend buttons to record as many segments as necessary for your experiment.
 - Click Done when you have completed all of the segments required for your experiment.

Analyze Your Experiment

F. Set measurements relevant to your experiment and record the results in a Data Report.

1. If choosing the Record from another Subject option:
 - Repeat Setup Steps 6–9, and then proceed to Signal Check.

21. After clicking Done, choose an option and click OK.

22. Remove the electrodes.

Remove the electrode cable pinch connectors and peel off all electrodes. Discard the electrodes. (BIOPAC electrodes are not reusable.) Wash the electrode gel residue from the skin, using soap and water. The electrodes may leave a slight ring on the skin for a few hours which is quite normal.
V. DATA ANALYSIS

In this section, you will examine ECG components of cardiac cycles and measure amplitudes (mV) and durations (msec) of the ECG components.

Note: Interpreting ECGs is a skill that requires practice to distinguish between normal variations and those arising from medical conditions. Do not be alarmed if your ECG is different from normal values and references in the Introduction.

FAST TRACK Data Analysis

1. Enter the Review Saved Data mode.

 - Note Channel Number (CH) designation:
 - CH 1: ECG Raw (hidden)
 - CH 2: Heart Rate
 - CH 40: ECG

 - Set the measurement boxes as follows:
 - Channel Measurement
 - CH 2: Value
 - CH 40: Delta T
 - CH 40: P-P
 - CH 40: BPM

Note: Measurements will be taken on the ECG channel. To see the average heart rate, select an area and measure Mean on CH 2, Rate.

Detailed Explanation of Data Analysis Steps

If entering Review Saved Data mode from the Startup dialog or lessons menu, make sure to choose the correct file.

The measurement boxes are above the marker region in the data window. Each measurement has three sections: channel number, measurement type, and result. The first two sections are pull-down menus that are activated when you click them.

Brief definition of measurements:

- Value: Displays the amplitude value at the point selected by the I-beam cursor. If an area is selected, displays the value of the endpoint based on the direction the cursor was dragged.
 - CH 2: Heart rate data is only updated at the end of an R-R interval so it remains constant within an R-R interval; therefore, the Value (BPM) measurement will be accurate from any selected point in the R-R interval.
 - Single point Values will be shown when placing the Arrow cursor over the data while holding down the left mouse button.

- Delta T: Displays the amount of time in the selected area (the difference in time between the endpoints of the selected area).

- P-P (Peak-to-Peak): Subtracts the minimum value from the maximum value found in the selected area.

- BPM: Beats Per Minute measurement first calculates the difference in time between the beginning and end of the selected area (seconds/beat) and divides this value into 60 seconds/minute.

The “selected area” is the area selected by the I-beam tool (including endpoints).

Textual notes (such as identifying components of the ECG wave) can be inserted into the graph by using the Annotation tool. This tool will place a small editable text box anywhere in the waveform.
2. Set up your display window for optimal viewing of three complete cardiac cycles from the initial “Supine” segment.

NOTE: For accurate BPM data go past the first two cardiac cycles.

![Zoom in on “Supine” data](image)

Fig. 5.16 Zoom in on “Supine” data

Note: The append event markers mark the beginning of each recording. Click (activate) the event marker to display its label.

Useful tools for changing view:

- **Display menu:** Autoscale Horizontal, Autoscale Waveforms, Zoom Back, Zoom Forward
- **Scroll Bars:** Time (Horizontal), Amplitude (Vertical)
- **Cursor Tools:** Zoom Tool
- **Buttons:** Overlap, Split, Adjust Baseline (Up, Down), Show Grid, Hide Grid, Copy Graph, Hide/Show Channel

Data point selection for Heart Rate data correlated to ECG data

![Data point selection for Heart Rate data correlated to ECG data](image)

Fig. 5.17 Overlap sample: Heart Rate and ECG after supine subject is seated

Adjusted Baseline allows you to position the waveform up or down in small increments so that the baseline (isoelectric line) can be exactly zero. After Adjust Baseline is pressed, Up and Down buttons are generated. Simply click these to move the waveform up or down. This is not needed to get accurate amplitude measurements, but may be desired before making a printout, or when using grids.

Note that the CH 2 Value measurement displays the BPM for the interval preceding the current R-R interval.

Follow the examples shown above to complete all the measurements required for the Data Report.

Data Analysis continues…

![Data point selection for Heart Rate data correlated to ECG data](image)

Fig. 5.18 Data point selection for Heart Rate data correlated to ECG data
7. **Zoom** in on a single cardiac cycle from “Supine” segment.
8. Measure Ventricular Systole and Diastole.
 📊 B
9. Repeat measurements for “After exercise” segment.
 📊 B
10. **Zoom** in on a single cardiac cycle from “Supine” segment.
11. Use the I-Beam cursor to select segments and measure the durations and wave amplitudes required for the Data Report. Use P-P measurement to obtain amplitudes.
 📊 C
12. **Zoom** in on a single cardiac cycle from “After exercise” segment.
13. Repeat duration and amplitude (P-P) measurements using “After exercise” data as required for the Data Report.
 📊 C

The remaining measurements use ECG data only. To hide Heart Rate data display and focus on ECG data, Alt + click (Windows) or Option + click (Mac) the “2” channel number box.

For Ventricular Systole and Diastole measurements, the T wave reference point for the selected area is 1/3 of the way down the descending portion of the T wave; if necessary, see Fig. 5.2 and Table 5.1 in the Introduction PDF for selected area details.

Measurement data starts at the append event marker labeled “After exercise.”

Select the components of the ECG as specified in the Introduction and gather wave amplitude data for 3 cycles using the P-P measurement. If necessary, see Fig. 5.2 and Table 5.1 in the Introduction for selected area details.

Follow the examples shown above to complete all the measurements required for your Data Report.
14. **OPTIONAL:** Using the Annotation tool, insert text boxes identifying the ECG components in the selected area. Copy and paste this graph to the Data Report at the end of Section C.

Use the Annotation Tool to insert text boxes into the graph identifying the ECG components in the selected portion, and then drag them to their correct locations within the ECG waveform.

15. Answer the questions at the end of the Data Report.
16. Save or Print the data file.
17. Quit the program.
18. Set the MP41 dial to Off.

Complete the Data Report immediately following this Data Analysis section. You may save the data, save notes that are in the journal, or print the data file.

END OF DATA ANALYSIS

END OF LESSON 5

Complete the Lesson 5 Data Report that follows.
ELECTROCARDIOGRAPHY I

ECG I

DATA REPORT

Student’s Name: ____________________________
Lab Section: ______________________________
Date: ________________________________

I. Data and Calculations

Subject Profile
Name: ____________________________
Age: ______ Gender: Male / Female
Height: ______ Weight: ______

A. Heart Rate

Complete the following tables with the lesson data indicated, and calculate the Mean as appropriate.

Table 5.2

<table>
<thead>
<tr>
<th>Recording: Condition</th>
<th>Cardiac Cycle</th>
<th>2</th>
<th>Value</th>
<th>3</th>
<th>Mean (calculate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start of inhale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start of exhale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Ventricular Systole and Diastole

Table 5.3

<table>
<thead>
<tr>
<th>Condition</th>
<th>Ventricular Systole</th>
<th>Ventricular Diastole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supine</td>
<td>Duration (ms)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ventricular Systole</td>
<td>Ventricular Diastole</td>
</tr>
<tr>
<td>After exercise</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Components of the ECG

Table 5.4

<table>
<thead>
<tr>
<th>ECG Component</th>
<th>Normative Values Based on resting heart rate 75 BPM</th>
<th>Duration (ms)</th>
<th>Amplitude (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Waves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QRS Complex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q-T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-P</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.5

<table>
<thead>
<tr>
<th>ECG Component</th>
<th>Normative Values Based on resting heart rate 75 BPM</th>
<th>Duration (ms)</th>
<th>Amplitude (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>.07 - .18</td>
<td>< .20</td>
<td></td>
</tr>
<tr>
<td>QRS Complex</td>
<td>.06 - .12</td>
<td>.10 - 1.5</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>.10 - .25</td>
<td>< .5</td>
<td></td>
</tr>
<tr>
<td>Intervals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-R</td>
<td>.12 - .20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q-T</td>
<td>.32 - .36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-R</td>
<td>.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-R</td>
<td>.02 - .10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-T</td>
<td>< .20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-P</td>
<td>0 - .40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Interpreting ECGs is a skill that requires practice to distinguish between normal variation and those arising from medical conditions. Do not be alarmed if your ECG does not match the “Normative Values.”

II. Questions

D. Using data from table 5.2:

1) Explain the changes in heart rate between conditions. Describe the physiological mechanisms causing these changes.

2) Are there differences in the cardiac cycle with the respiratory cycle (“Start of inhale-exhale” data)?

E. Using data from table 5.3:

1) What changes occurred in the duration of systole and diastole between resting and post-exercise?

F. Using data from tables 5.4 and 5.5:

1) Compared to the resting state, do the durations of the ECG intervals and segments decrease during exercise? Explain

2) Compare your ECG data to the normative values. Explain any differences.
3) Compare ECG data with other groups in your laboratory. Does the data differ? Explain why this may not be unusual.

G. In order to beat, the heart needs three types of cells. Describe the cells and their function.
1) __
2) __
3) __

H. List in proper sequence, starting with the normal pacemaker, elements of the cardiac conduction system.
1) __
2) __
3) __
4) __
5) __
6) __
7) __
8) __

I. Describe three cardiac effects of increased sympathetic activity, and of increased parasympathetic activity.
Sympathetic

Parasympathetic

J. In the normal cardiac cycle, the atria contract before the ventricles. Where is this fact represented in the ECG?

K. What is meant by “AV delay” and what purpose does the delay serve?

L. What is the isoelectric line of the ECG?

M. Which components of the ECG are normally measured along the isoelectric line?
III. OPTIONAL Active Learning Portion

A. Hypothesis

B. Materials

C. Method

D. Set Up

E. Experimental Results

End of Lesson 5 Data Report