BIOPAC

Fundamentals of Physiological Data Recording

Frazer Findlay CEO BIOPAC Systems, Inc.

Wireless, Wearable Data Recording PHYSIOLOGY ANYWHERE

Complete Solutions for Life Science Data Acquisition & Analysis.

LEARN MORE

0000 ||

© BIOPAC Systems, Inc. 2018

www.biopac.com

Over 98% of top universities run BIOPAC Systems THE WORLD DISCOVERS WITH BIOPAC

Solutions for life science research and education

www.biopac.com

经延期

THE WORLD DISCOVERS WITH BIOPAC

BIOPAC systems cited 30,000 times

© BIOPAC Systems, Inc. 2018

www.biopac.com

Biopac Student Lab Teaching Systems

RANKED #1 FOR PHYSIOLOGY EXPERIMENTS

HAPS Member Survey 2017

LEARN MORE

© BIOPAC Systems, Inc. 2018

www.biopac.com

00000

Agenda

- Data acquisition basics
- Sampling rate
- Amplifier gain
- Filtering
- Scaling/calibration
- Applying electrodes and transducers

Data acquisition basics

© BIOPAC Systems, Inc. 2018

www.biopac.com

What is an A/D converter?

www.biopac.com

© BIOPAC Systems, Inc. 2018

BIOPAC—Inspiring people and enabling disco

'OWLEDGE' SOFTWARF

A

BIOPAC

Systems, Inc.

MP160

POWER

ACTIVITY O

Analog chart recorders and oscilloscopes

© BIOPAC Systems, Inc. 2018

The body as a battery – heart, brain, muscle

© BIOPAC Systems, Inc. 2018

www.biopac.com

Biopotential Signals

Heart – ECG Electrocardiogram Brain – EEG Electroencephalogram Brain – ERS Evoked Response Muscle – EMG Electromyogram Eyes – EOG Electrooculogram Stomach – EGG Electrogastrogram Transducer Signals Respiration – Respiratory Effort Transducer Temperature – Thermistor / Thermocouple Airflow – Pneumotachogram Force – Hand clench, Grip, Tissue Transducer Blood Pressure – BP cuff or continuous

Electrodermal – EDA Skin Conductance Level and Skin Conductance Response Impedance Cardiography – ICG stroke volume and cardiac output

© BIOPAC Systems, Inc. 2018

Sampling Rates

© BIOPAC Systems, Inc. 2018

www.biopac.com

Sample rate

- Great Data
- Hz = samples/second
- Why does sample rate matter?

www.biopac.com

Sample rate too low

Sample rate

Not good for HRV studies or waveform analysis

© BIOPAC Systems, Inc. 2018

www.biopac.com

Signal	Amplitude	Frequency	
Heart Potential (ECG)	50 microvolts to 5 millivolts	.05-100Hz	
Brain Potential (EEG)	2 to 10 microvolts	1-100 Hz	
Muscle Potential (EMG)	20 microvolts to 10 millivolts	10 Hz to 2,000 Hz	
Electro-oculogram (EOG)	10 microvolts to 4 millivolts	0.1 -100 Hz	
Electro-gastrogram (EGG)	10 microvolts to 80 millivolts	0-1 Hz	

Two times the highest frequency component of a bandwidth limited signal

TIP: A good rule of thumb is to set the sampling rate to at least three to four times the highest frequency component of interest.

© BIOPAC Systems, Inc. 2018

Demonstration time

Audience Poll

Amplifier Gains

© BIOPAC Systems, Inc. 2018

www.biopac.com

BIOPAC Amplifiers

- Need to match the size of the signal
 - A smaller amplitude signal requires a higher gain
 - A larger amplitude signal can tolerate a lower gain

Demonstration time

Audience Poll

Filtering

© BIOPAC Systems, Inc. 2018

www.biopac.com

- High Pass, Low Pass, Band Pass, Band Stop, Comb Band Stop filtering
- AC vs. DC (let's use EDA as an example)
- Using FFT to identify frequencies

Demonstration time

Audience Poll

Scaling and Calibration

© BIOPAC Systems, Inc. 2018

www.biopac.com

- Transducer calibration
- Signal Scaling for viewing

Demonstration time

Applying Electrodes and Transducers

- Skin preparation
- Consider the subject and what they're doing
- Place electrodes and transducers to avoid artifact
- Tape leads and electrodes in place
- Test signals before recording
- Understand the signal you are recording

Lead Configuration

Lead	Polarity
Lead I	right arm (-) to left arm (+)
Lead II	right arm (-) to left leg (+)
Lead III	left arm (-) to left leg (+)

www.biopac.com

Lead Configuration

If you record LEAD I and LEAD III, you can calculate LEAD II

LEAD I + LEAD III = LEAD II

Use the Expression calculation to calculate the 3rd Lead, plus the Augmented leads.

www.biopac.com

aVR = (Lead I + Lead II)/2 aVL = (Lead I - Lead III)/2 = Lead I - ((Lead II)/2) aVF = (Lead II + Lead III)/2 = Lead II - ((Lead I)/2)

www.biopac.com

© BIOPAC Systems, Inc. 2018

www.biopac.com

Subject Preparation

© BIOPAC Systems, Inc. 2018

Fig. 5.2 Components of the ECG & Electrical and mechanical events of the cardiac cycle

© BIOPAC Systems, Inc. 2018

C	ECG OMPONENT	Measurement area	Represent	Duration (seconds)	Amplitude (millivolts)
Waves	P	begin and end on isoelectric line (baseline); normally upright in standard limb leads	depolarization of the right and left atria.	0.07 – 0.18	< 0.25
	QRS complex	begin and end on isoelectric line (baseline) from start of Q wave to end of S wave	depolarization of the right and left ventricles. Atrial repolarization is also part of this segment, but the electrical signal for atrial repolarization is masked by the larger QRS complex (see Fig. 5.2)	0.06 – 0.12	0.10 – 1.50
	т	begin and end on isoelectric line (baseline)	repolarization of the right and left ventricles.	0.10 - 0.25	< 0.5
Intervals	P-R	from start of P wave to start of QRS complex	time from the onset of atrial depolarization to the onset of ventricular depolarization.	0.12-0.20	
	Q-T	from start of QRS complex to end of T wave	time from onset of ventricular depolarization to the end of ventricular repolarization. It represents the refractory period of the ventricles.	0.32-0.36	
	R-R	from peak of R wave to peak of succeeding R wave	time between two successive ventricular depolarizations.	0.80	
Segments	P-R	from end of P wave to start of QRS complex	time of impulse conduction from the AV node to the ventricular myocardium.	0.02 – 0.10	
	S-T	between end of S wave and start of T wave	period of time representing the early part of ventricular repolarization during which ventricles are more or less uniformly excited.	< 0.20	
	T-P	from end of T wave to start of successive P wave	time from the end of ventricular repolarization to the onset of atrial depolarization.	0.0 - 0.40	

Notes: Tabled values represent results from a typical Lead II setup (wrist and ankle electrode placement) with Subject heart rate ~75 BPM. Values are influenced by heart rate and placement; values for torso placement would be different.

Q&A Session:

Please submit questions for our guest speakers through the Questions Window. While all questions cannot be answered during our live session, all will be reviewed and answered following our event.

-- Thank you for your participation

For more information:

www.biopac.com info@biopac.com Please complete our survey upon exiting the webinar. Thank you for attending!

View upcoming and on-demand webinars at: www.biopac.com/webinars

Thank you for your time and attention!

