CNAP® HD (NIBP100D-HD) IN RESEARCH

Benefits in Research
20.10.2015, V3.2
One finger sensor providing complete cardiovascular responses to tests – continuous & non invasive

SETUP & PARAMETERS

Unique combination of noninvasive continuous…

- Pulse Rate
- Blood Pressure
- Cardiac Output, Stroke Volume
- Systemic Vascular Resistance

CNAP® HD sold as NIBP100D/NIBP100D-HD
Blood pressure, cardiac output and vascular resistance are used to differentiate between psychophysiological states.

WHY CONTINUOUS BP, CO & SVR IN RESEARCH?

- Assessment of cardiovascular response to (psycho)physiological states
 - Reactions of the human body to *challenge and threat* (positive and negative stress) \[1,2\]
 - Quantification of *emotional response* \[3\]

Full hemodynamics and simple setup brings huge benefits for scientific studies

FEATURES & BENEFITS OF CNAP® HD IN RESEARCH

- **SIMPLE AND QUICK SET-UP**
 - One finger sensor provides all parameters noninvasively – no placing of catheters or additional electrodes.

- **QUICK RECORDING**
 - Signals displayed only shortly after startup
 - Enables accurate & immediate feedback on arterial BP, cardiac output, fluid and hemodynamic status, etc.

- **CLINICALLY PROVEN AND VALIDATED**
 - Combination of finger sensor with NBP calibration provides high accuracy BP signal
 - Continuity, accuracy & waveform dynamics are equivalent to intra-arterial measurement.
 - Proven solution for consistent, repeatable results

- **SIMPLE DATA TRANSFER AND ANALYSIS**
 - Up to 4 analog output channels (BP waveform, MAP, CO*, PPV*)
 - Plug & play integration into all common data acquisition systems (e.g. MP150: AcqKnowledge) and subject monitors.

*CE approval granted; FDA approval pending;
CNAP® HD provides easy setup for cardiac output from the same finger sensor

WAYS TO MEASURE CO IN RESEARCH

CNAP® HD

- Quick & simple setup
- Using a reusable finger sensor

Standard Impedance Cardiography

- Complex and time-consuming setup requires to undress upper body
- Placing of disposable electrodes
CNAP® HD combines three core technologies

HOW DOES CNAP® HD WORK?

COMBINATION OF 3 TECHNOLOGIES/METHODS:

1. **Vascular unloading principle**
 - Blood pressure, pulse rate from finger sensor

2. **Standard upper arm cuff for calibration (NBP)**
 - Reference BP value at heart level for automatic scaling

3. **Pulse Contour Analysis (PCA)**
 - SV, CO, SVR
Integrated pressure chambers measure blood pressure continuously

CONTINUOUS BLOOD PRESSURE

1. Infrared light sensors pick up blood volume and flow.

2. In- and deflating pressure chambers follow blood pulsation and keep blood flow constant. The resulting pressure in the finger sensor corresponds to the real arterial pressure.¹

3. The pressure system is controlled by multiple digital feedback loops and the “VERIFI-algorithm” for high fidelity signal processing and artifact rejection.²

¹ Jan Penaz, Brno, Czech Republic 1973
Interaction of fingersensor with NBP provides high accuracy BP signal – equivalent to invasive arterial line

CALIBRATION TO CLINICAL GOLD STANDARD

1. Obtaining a first un-calibrated finger measurement

2. Obtaining a NBP measurement

3. Applying NBP pulse pressure to the finger signal

4. Calibrating the finger curve to sys- and diastolic NBP pressure

All consecutive BP values are calculated from changed calibrated finger blood pressure signal

CNAP® HD sold as NIBP100D/NIBP100D-HD
Cardiac output measure obtained from accurate blood pressure waveform using well-known pulse contour analysis

CNAP® HEMODYNAMICS

- Applying Ohm’s Law to Hemodynamics

Voltage = Current x Resistance

\[\text{MAP} - \text{CVP} = \text{CO} \times \text{SVR} \]

\[\text{MAP} \approx \text{CO} \times \text{SVR} \]

- MAP … mean arterial pressure
- CVP … central venous pressure*
- CO … cardiac output
- SVR … systemic vascular resistance

* CVP ≈ 7 [mmHg] and can be neglected

- MAP derived from accurate blood pressure waveform provided by Vascular unloading
- CO is calculated from pulse contour analysis (PCA)
- SVR results from CO and MAP
- SVI, CI, SVRI absolute values can be indexed to body surface area

CNAP® HD sold as NIBP100D/NIBP100D-HD
CNAP® arterial pressure is comparable with an invasive arterial line, even during general anesthesia

CLINICAL VALIDATION: CNAP® BLOOD PRESSURE

Erlangen, Germany[1]:

- 88 Patients (Neuro, Abdominal, Cardiac Surgery)
- Bland-Altman Plot for MAP:
 - Bias (SD) = -1.6 (11.0) mmHg
- Precision (trending):
 - CNAP® as accurate as invasive BP (3.2 mmHg for MAP)
- 82.1% fast blood pressure changes detected simultaneously by CNAP® and IBP

CO with CNAP® HD is inter-changeable with clinical standards and tracks changes reliably

CLINICAL VALIDATION: CARDIAC OUTPUT WITH CNAP® HD

- **HIGH ACCURACY** of non-invasive CO with CNAP® HD compared to invasive transpulmonary thermodilution¹. Bland-Altman plots show:
 - Small bias (0.2 l/min) and narrow limits of agreement (LoA: -1.7 to 2.2)
 - Percentage error: 25% (according to strict Critchley standard of ≤30%²,³)

- **HIGH TRENDING ABILITY** of non-invasive CO with CNAP® HD compared to invasive clinical standards
 - Concordance rates ≥90%⁴ (according to standard⁵)

⁴ CNAP® HD validation data for CE mark and prepared for publication in peer-reviewed journal – data available upon request

CNAP® is used in a variety of applications & scientific studies

RESEARCH EXAMPLES WITH CNAP®

Psychophysiology: Challenge & Threat
Cornick, Blascovich et al. from the University of California in Santa Barbara investigated the cardiovascular consequences of exercise in obese subjects in a stressful environment. Cardiovascular and self-report measures were recorded. Findings indicated that those who are more self-aware showed cardiovascular response patterns indicative of threat.¹

Psychophysiology: Emotional Response
At Pitzer College, California, Noble et al. performed a study to assess the effects of mainstream media on women's physiological and psychological functioning.²

The Naval Aerospace Medical Research Laboratory studied the detection of deception by use of continuous blood pressure³.

Sanchez-Gonzalez et al. evaluated the cardiovascular reactivity to anxiety in young and middle-aged individuals⁴.

Psychophysiology: Interaction Hemodynamics & Brain
The Institute for Knowledge Discovery from Graz, Austria studied the influence of slow blood pressure oscillations on self-paced movements. "Free will" is not only brain directed but also a matter of blood pressure.⁵

CNAP® is used in a variety of applications & scientific studies

RESEARCH EXAMPLES WITH CNAP®

Physiology
Hurr et al. from the Department of Kinesiology and Health Education (The University of Texas at Austin; USA) determined whether there is a difference in cerebral vasodilatory capacity in response to rebreathing-induced hypercapnia between African Americans and Caucasian Americans.6

Sports
Telles et al. assessed heart rate variability, non-invasive arterial BP, and respiration rate, during alternate nostril yoga breathing and breath awareness sessions.7

Gerontology
Pereira et al. from Marquette University, USA, investigated the steadiness of muscle contractions in young and old adults during high and low cognitive demand tasks.8

Contact us for a complete bibliography of CNAP® / NIBP100D studies
