This lesson demonstrates the principles of biofeedback training for relaxation purposes. The student will record and view ECG, heart rate, and electrodermal activity (EDA). Subjects control the position of a vertical bar graph by influencing their heart rate and EDA. As heart rate increases, the bar moves up; if the heart beats slower, the bar moves down. A separate bar moves up as EDA increases and down as EDA decreases.
Introduce the concept of biofeedback training for relaxation.
Measure levels of arousal via heart rate and electrodermal activity.
BSL Lessons are designed to allow at least four students to record and save data in a normal lab period (60-90 minutes). Typically, labs work most efficiently with three or more students working together at each BSL station.
BSL L14 Calibration
Biopac Student Lab Student Download
This lesson requires a Biopac Student Lab (BSL) System and the following hardware. If your BSL System does not include all hardware items, expand your system by selecting required items below. For more details, review the Lesson: L# BSL Lessons - see the Lab Manual or launch BSL; A# and H# BSL PRO Lessons, click the PDF link above to review full setup, recording, and analysis procedures.
Easily record great ECG data and derived signals for heart rate, RR interval, and R-wave amplitude. BIOPAC’s new Smart Amplifiers are designed for great data. Smart Amplifiers improve performance by amplifying the physiological signal close to the subject, which allows a high-level voltage connection to the data acquisition system and reduces noise artifact. AcqKnowledge Smart […]
View AllBIOPAC provides researchers with a complete range of tools to gather data on heart rate variability (HRV). The following studies demonstrate just some of the ways in which HRV research benefits from the implementation of BIOPAC hardware and software solutions. PTSD and HRV Post-traumatic stress disorder (PTSD) has been associated with dysfunction of the autonomic […]
BIOPAC’s comprehensive Introductory ECG Guide addresses fundamental to advanced concerns to optimize electrocardiography data recording and analysis. Topics include: ECG Complex; Electrical and Mechanical Sequence of a Heartbeat; Systole and Diastole; Configurations for Lead I, Lead II, Lead III, 6-lead ECG, 12-lead ECG, precordial leads; Ventricular Late Potentials (VLPs); ECG Measurement Tools; Automated Analysis Routines for extracting, […]
Read All