BSL EMG lesson II explores the role of skeletal muscle in performing mechanical tasks. The lesson uses a hand dynamometer to demonstrate the use of skeletal muscle when recording the maximum grip strength for both hands and also allows students to record EMG while inducing muscle fatigue. The system will automatically calibrate the hand dynamometer and scale the force values to kilograms for the electromyogram. Students will see the level of motor unit recruitment associated with the precise amount of applied force.
BSL Lessons are designed to allow at least four students to record and save data in a normal lab period (60-90 minutes). Typically, labs work most efficiently with three or more students working together at each BSL station.
BSL L02 Cal SS25L
BSL L02 Cal SS25LA
Biopac Student Lab Student Download
This lesson requires a Biopac Student Lab (BSL) System and the following hardware. If your BSL System does not include all hardware items, expand your system by selecting required items below. For more details, review the Lesson: L# BSL Lessons - see the Lab Manual or launch BSL; A# and H# BSL PRO Lessons, click the PDF link above to review full setup, recording, and analysis procedures.
High-performance mobile fNIR Imaging Systems are stand-alone functional brain imaging solutions for continuous NIR spectroscopy (NIRS). These top of the line systems provide cognitive function assessment and eliminate a great many of the drawbacks of a functional MRI. Mobile subjects are comfortable and can respond naturally in real-world situations to take a test or perform mobile […]
View AllBIOPAC provides software and hardware that allows research teams to run autonomic function tests while collecting physiological data. Here are a few studies focusing on BIOPAC’s ability to record physiological signals during autonomic function testing. The Internet, Sleep, and Heart Rate Does internet usage lead to poorer sleep? Using a BIOPAC Data Acquisition System to measure cardiovascular […]
BIOPAC’s comprehensive Introductory ECG Guide addresses fundamental to advanced concerns to optimize electrocardiography data recording and analysis. Topics include: ECG Complex; Electrical and Mechanical Sequence of a Heartbeat; Systole and Diastole; Configurations for Lead I, Lead II, Lead III, 6-lead ECG, 12-lead ECG, precordial leads; Ventricular Late Potentials (VLPs); ECG Measurement Tools; Automated Analysis Routines for extracting, […]
Read All